Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Phenanthrene

Formula: C6H4(C2H2(CC(C4H4))) (cr,l)
CAS RN: 85-01-8
ATcT ID: 85-01-8*500
SMILES: c1ccc2c(c1)ccc3c2cccc3
InChI: InChI=1S/C14H10/c1-3-7-13-11(5-1)9-10-12-6-2-4-8-14(12)13/h1-10H
InChIKey: YNPNZTXNASCQKK-UHFFFAOYSA-N
Hills Formula: C14H10

2D Image:

c1ccc2c(c1)ccc3c2cccc3
Aliases: C6H4(C2H2(CC(C4H4))); Phenanthrene; NSC 26256; Ravatite; [3]Helicene
Relative Molecular Mass: 178.2292 ± 0.0112

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
136.24110.97± 0.66kJ/mol

Top contributors to the provenance of ΔfH° of C6H4(C2H2(CC(C4H4))) (cr,l)

The 20 contributors listed below account only for 84.3% of the provenance of ΔfH° of C6H4(C2H2(CC(C4H4))) (cr,l).
A total of 33 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
41.47937.1 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7048.5 ± 0.9 kJ/molNagano 2002
14.97937.2 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7048.1 ± 1.5 kJ/molSteele 1990
4.67937.7 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1685.14 ± 0.64 kcal/molFries 1935
3.97937.5 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1684.97 ± 0.70 kcal/molMagnus 1951, note unc
3.17939.1 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(C2H2(CC(C4H4))) (cr,l) ΔrH°(298.15 K) = -3.11 ± 0.4 kcal/molColeman 1966, est unc
2.92101.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.77930.1 C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7062.6 ± 2.1 kJ/molRibeiro da Silva 2007
1.12101.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
1.12101.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
1.17930.2 C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7065.0 ± 1.1 (×2.378) kJ/molNagano 2001
1.0120.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.97937.3 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1686.04 ± 0.30 (×4.655) kcal/molColeman 1966
0.97937.4 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1685.3 ± 1.4 kcal/molBender 1952, est unc
0.97938.1 C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(323.31 K) = 91.6 ± 0.8 kJ/molRibeiro da Silva 2006, note unc
0.82101.10 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
0.77901.16 C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -1231.34 ± 0.36 kcal/molKeffler 1927, as quoted by NIST WebBook, est unc
0.67941.2 C6H5CCC6H5 (g) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(0 K) = -47.85 ± 1.3 kcal/molRuscic G4
0.67941.4 C6H5CCC6H5 (g) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(0 K) = -49.07 ± 1.3 kcal/molRuscic CBS-n
0.57935.5 C6H4(C2H2(CC(C4H4))) (g) + 2 CH2CH2 (g) → 3 C6H6 (g) ΔrH°(0 K) = -55.7 ± 6.3 kJ/molKarton 2013
0.52101.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H4(C2H2(CC(C4H4))) (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
73.3 PhenanthreneC6H4(C2H2(CC(C4H4))) (g)c1ccc2c(c1)ccc3c2cccc3231.88203.07± 0.80kJ/mol178.2292 ±
0.0112
85-01-8*0
39.1 AnthraceneC6H4(CH(CC(C4H4)CH)) (cr,l)c1ccc2cc3ccccc3cc2c1150.59124.78± 0.92kJ/mol178.2292 ±
0.0112
120-12-7*500
37.5 AnthraceneC6H4(CH(CC(C4H4)CH)) (g)c1ccc2cc3ccccc3cc2c1255.96226.94± 0.98kJ/mol178.2292 ±
0.0112
120-12-7*0
32.5 NaphthaleneC6H4(C4H4) (g)c1ccc2ccccc2c1171.07147.60± 0.59kJ/mol128.1705 ±
0.0080
91-20-3*0
32.2 Naphthalene cation[C6H4(C4H4)]+ (g)c1c(cc2ccccc2c1)[H+]956.84933.76± 0.60kJ/mol128.1700 ±
0.0080
34512-27-1*0
31.9 NaphthaleneC6H4(C4H4) (cr,l)c1ccc2ccccc2c194.6275.03± 0.59kJ/mol128.1705 ±
0.0080
91-20-3*500
29.2 Carbon dioxideCO2 (g)C(=O)=O-393.110-393.476± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
28.9 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.091936.926± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
27.9 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.991± 0.030kJ/mol62.0248 ±
0.0012
463-79-6*1000
25.1 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.30-384.72± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500

Most Influential reactions involving C6H4(C2H2(CC(C4H4))) (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.4707937.1 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7048.5 ± 0.9 kJ/molNagano 2002
0.4617938.1 C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(323.31 K) = 91.6 ± 0.8 kJ/molRibeiro da Silva 2006, note unc
0.2877939.1 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(C2H2(CC(C4H4))) (cr,l) ΔrH°(298.15 K) = -3.11 ± 0.4 kcal/molColeman 1966, est unc
0.1697937.2 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7048.1 ± 1.5 kJ/molSteele 1990
0.1057938.7 C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(298.15 K) = 21.72 ± 0.40 kcal/molMorawetz 1972, note unc
0.0917938.4 C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(298.15 K) = 91.6 ± 1.8 kJ/molHosseini 1995, Chikos 1998
0.0737938.6 C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(325 K) = 90.5 ± 2.0 kJ/molde Kruif 1980, note unc
0.0617938.5 C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(350 K) = 87.24 ± 2.2 kJ/molTorres-Gomez 1988, note unc
0.0537937.7 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1685.14 ± 0.64 kcal/molFries 1935
0.0467939.2 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(C2H2(CC(C4H4))) (cr,l) ΔrH°(298.15 K) = -3.0 ± 1.0 kcal/molBender 1952, est unc
0.0447937.5 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1684.97 ± 0.70 kcal/molMagnus 1951, note unc
0.0337938.2 C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(372.36 K) = 90.34 ± 1.0 (×2.954) kJ/molRuzicka 1998, est unc
0.0247939.5 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(C2H2(CC(C4H4))) (cr,l) ΔrH°(298.15 K) = -4.65 ± 0.6 (×2.278) kcal/molFries 1935, as quoted by Cox 1970, est unc
0.0187938.8 C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(298.15 K) = 90.5 ± 4 kJ/molChickos 1988, est unc
0.0187939.3 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(C2H2(CC(C4H4))) (cr,l) ΔrH°(298.15 K) = -4.87 ± 0.7 (×2.278) kcal/molMagnus 1951, est unc
0.0157938.3 C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(318 K) = 95.0 ± 4.4 kJ/molOja 1998
0.0117937.3 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1686.04 ± 0.30 (×4.655) kcal/molColeman 1966
0.0117937.4 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1685.3 ± 1.4 kcal/molBender 1952, est unc
0.0007939.6 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(C2H2(CC(C4H4))) (cr,l) ΔrH°(298.15 K) = -10.9 ± 2 (×3.83) kcal/molMilone 1932, as quoted by Cox 1970, est unc
0.0007937.8 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1675.1 ± 1.7 (×5.657) kcal/molMilone 1932, as quoted by Cox 1970


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.