Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Anthracene

Formula: C6H4(CH(CC(C4H4)CH)) (g)
CAS RN: 120-12-7
ATcT ID: 120-12-7*0
SMILES: c1ccc2cc3ccccc3cc2c1
InChI: InChI=1S/C14H10/c1-2-6-12-10-14-8-4-3-7-13(14)9-11(12)5-1/h1-10H
InChIKey: MWPLVEDNUUSJAV-UHFFFAOYSA-N
Hills Formula: C14H10

2D Image:

c1ccc2cc3ccccc3cc2c1
Aliases: C6H4(CH(CC(C4H4)CH)); Anthracene; Anthracin; Green Oil; NSC 7958; Paranaphthalene; Tetra Olive N2G
Relative Molecular Mass: 178.2292 ± 0.0112

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
255.96226.94± 0.98kJ/mol

3D Image of C6H4(CH(CC(C4H4)CH)) (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H4(CH(CC(C4H4)CH)) (g)

The 20 contributors listed below account only for 74.3% of the provenance of ΔfH° of C6H4(CH(CC(C4H4)CH)) (g).
A total of 40 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
12.97930.1 C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7062.6 ± 2.1 kJ/molRibeiro da Silva 2007
11.27939.1 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(C2H2(CC(C4H4))) (cr,l) ΔrH°(298.15 K) = -3.11 ± 0.4 kcal/molColeman 1966, est unc
8.37930.2 C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7065.0 ± 1.1 (×2.378) kJ/molNagano 2001
4.87931.10 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(392.5 K) = 23.826 ± 0.186 kcal/molMalaspina 1973, 2nd Law
4.67937.1 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7048.5 ± 0.9 kJ/molNagano 2002
3.27930.13 C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1687.10 ± 1.0 kcal/molBeckers 1931, est unc
2.77933.2 C6H4(C2H2(CC(C4H4))) (g) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(0 K) = 5.65 ± 1.0 kcal/molRuscic G4
2.77933.4 C6H4(C2H2(CC(C4H4))) (g) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(0 K) = 5.70 ± 1.0 kcal/molRuscic CBS-n
2.37929.2 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -3.55 ± 0.90 kcal/molRuscic G4
2.37929.1 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -3.63 ± 0.90 kcal/molRuscic G3X
2.37929.4 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -2.87 ± 0.90 kcal/molRuscic CBS-n
2.27933.1 C6H4(C2H2(CC(C4H4))) (g) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(0 K) = 5.68 ± 1.1 kcal/molRuscic G3X
2.27930.4 C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1689.15 ± 0.41 (×2.954) kcal/molColeman 1966
2.07930.3 C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7063.65 ± 5.28 kJ/molMetzger 1983
1.97929.3 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -2.96 ± 1.0 kcal/molRuscic CBS-n
1.87939.2 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(C2H2(CC(C4H4))) (cr,l) ΔrH°(298.15 K) = -3.0 ± 1.0 kcal/molBender 1952, est unc
1.67937.2 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7048.1 ± 1.5 kJ/molSteele 1990
1.67933.3 C6H4(C2H2(CC(C4H4))) (g) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(0 K) = 5.68 ± 1.3 kcal/molRuscic CBS-n
1.47930.6 C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1688.3 ± 1.5 kcal/molBender 1952, est unc
1.32101.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H4(CH(CC(C4H4)CH)) (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
87.9 AnthraceneC6H4(CH(CC(C4H4)CH)) (cr,l)c1ccc2cc3ccccc3cc2c1150.59124.78± 0.92kJ/mol178.2292 ±
0.0112
120-12-7*500
37.5 PhenanthreneC6H4(C2H2(CC(C4H4))) (cr,l)c1ccc2c(c1)ccc3c2cccc3136.24110.97± 0.66kJ/mol178.2292 ±
0.0112
85-01-8*500
36.6 PhenanthreneC6H4(C2H2(CC(C4H4))) (g)c1ccc2c(c1)ccc3c2cccc3231.88203.07± 0.80kJ/mol178.2292 ±
0.0112
85-01-8*0
36.1 NaphthaleneC6H4(C4H4) (g)c1ccc2ccccc2c1171.07147.60± 0.59kJ/mol128.1705 ±
0.0080
91-20-3*0
35.8 Naphthalene cation[C6H4(C4H4)]+ (g)c1c(cc2ccccc2c1)[H+]956.84933.76± 0.60kJ/mol128.1700 ±
0.0080
34512-27-1*0
35.4 NaphthaleneC6H4(C4H4) (cr,l)c1ccc2ccccc2c194.6275.03± 0.59kJ/mol128.1705 ±
0.0080
91-20-3*500
19.6 Carbon dioxideCO2 (g)C(=O)=O-393.110-393.476± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
19.4 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.091936.926± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
18.7 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.991± 0.030kJ/mol62.0248 ±
0.0012
463-79-6*1000
18.3 1-Naphthyl anion[C6H4(CCHCHCH)]- (g)c12ccccc1C=CC=[C-]2283.5264.1± 1.2kJ/mol127.1631 ±
0.0080
125254-29-7*0

Most Influential reactions involving C6H4(CH(CC(C4H4)CH)) (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.3637931.10 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(392.5 K) = 23.826 ± 0.186 kcal/molMalaspina 1973, 2nd Law
0.1037929.1 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -3.63 ± 0.90 kcal/molRuscic G3X
0.1037929.4 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -2.87 ± 0.90 kcal/molRuscic CBS-n
0.1037929.2 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -3.55 ± 0.90 kcal/molRuscic G4
0.0837929.3 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -2.96 ± 1.0 kcal/molRuscic CBS-n
0.0787931.4 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(350.4 K) = 99.0 ± 0.8 (×2.089) kJ/molRibeiro da Silva 2006, note unc
0.0767931.5 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(298.15 K) = 100.8 ± 1.7 kJ/molSantos 2004
0.0657931.11 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(392.5 K) = 24.148 ± 0.110 (×4) kcal/molMalaspina 1973, 2nd Law
0.0587933.4 C6H4(C2H2(CC(C4H4))) (g) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(0 K) = 5.70 ± 1.0 kcal/molRuscic CBS-n
0.0587933.2 C6H4(C2H2(CC(C4H4))) (g) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(0 K) = 5.65 ± 1.0 kcal/molRuscic G4
0.0557931.9 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(349 K) = 100.6 ± 2.0 kJ/molde Kruif 1980, note unc
0.0507931.15 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(346.2 K) = 24.3 ± 0.5 kcal/molBradley 1953b, est unc
0.0507931.14 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(388 K) = 24.1 ± 0.5 kcal/molKlochov 1958, Malaspina 1973, Roux 2008, est unc
0.0487933.1 C6H4(C2H2(CC(C4H4))) (g) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(0 K) = 5.68 ± 1.1 kcal/molRuscic G3X
0.0467931.12 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(350.7 K) = 23.54 ± 0.5 (×1.044) kcal/molKelley 1964, est unc
0.0407931.13 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(338 K) = 24.7 ± 0.5 (×1.114) kcal/molHoyer 1958, Roux 2008
0.0347933.3 C6H4(C2H2(CC(C4H4))) (g) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(0 K) = 5.68 ± 1.3 kcal/molRuscic CBS-n
0.0327931.8 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(338 K) = 102.6 ± 2.6 kJ/molHansen 1986, Roux 2008
0.0287931.6 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(340.5 K) = 100.0 ± 2.8 kJ/molOja 1998
0.0207931.3 C6H4(CH(CC(C4H4)CH)) (cr,l) → C6H4(CH(CC(C4H4)CH)) (g) ΔrH°(335 K) = 98.51 ± 3.32 kJ/molGoldfarb 2008


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.