Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Carbonic acid

Formula: C(O)(OH)2 (aq, undissoc)
CAS RN: 463-79-6
ATcT ID: 463-79-6*1000
SMILES: OC(=O)O
InChI: InChI=1S/CH2O3/c2-1(3)4/h(H2,2,3,4)
InChIKey: BVKZGUZCCUSVTD-UHFFFAOYSA-N
Hills Formula: C1H2O3

2D Image:

OC(=O)O
Aliases: C(O)(OH)2; Carbonic acid; Acid of air; NSC 81688; OC(OH)2; OHC(O)OH; HOC(O)OH; H2CO3
Relative Molecular Mass: 62.0248 ± 0.0012

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-698.991± 0.030kJ/mol

Top contributors to the provenance of ΔfH° of C(O)(OH)2 (aq, undissoc)

The 20 contributors listed below account only for 69.1% of the provenance of ΔfH° of C(O)(OH)2 (aq, undissoc).
A total of 183 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
22.8120.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
11.23076.5 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 2.008 ± 0.003 kcal/molBerg 1978a
6.62101.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
4.22245.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.83076.3 CO2 (g) → CO2 (aq, undissoc) ΔrG°(298.15 K) = 2.009 ± 0.006 kcal/molHu 1972a, Berg 1978a, est unc
2.62101.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
2.62101.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
2.02244.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
1.82101.10 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
1.6152.1 OH (g) → [OH]+ (g) ΔrH°(0 K) = 104989 ± 5 (×2.229) cm-1Wiedmann 1992, note unc
1.32244.6 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/molGOMB Ref Calorimeter, Alexandrov 2002
1.3161.6 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1183 ± 0.0015 eVBodi 2014
1.22101.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
1.1147.1 OH (g) → O (g) H (g) ΔrH°(0 K) = 35580 ± 15 cm-1Sun 2020
1.01668.1 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/molVanderzee 1972c
0.92101.2 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/molDewey 1938, note CO2, Rossini 1938, note CO2c
0.92101.3 C (graphite) O2 (g) → CO2 (g) ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/molJessup 1938, note CO2a, Rossini 1938, note CO2c
0.8163.1 [OH]- (g) → O- (g) H (g) ΔrH°(0 K) = 4.7796 ± 0.0010 (×2.089) eVMartin 2001, est unc
0.7161.7 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1190 ± 0.002 eVBodi 2014
0.72244.5 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.43 ± 0.35 kJ/molAlexandrov 2002a, Alexandrov 2002

Top 10 species with enthalpies of formation correlated to the ΔfH° of C(O)(OH)2 (aq, undissoc)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
79.2 WaterH2O (cr,l)O-286.268-285.796± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*500
79.2 WaterH2O (g, ortho)O-238.613-241.801± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*1
79.2 WaterH2O (g, para)O-238.898-241.801± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*2
79.2 WaterH2O (g)O-238.898-241.801± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*0
79.2 WaterH2O (cr, l, eq.press.)O-286.269-285.797± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*499
79.2 WaterH2O (l, eq.press.)O-285.797± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*589
79.2 Oxonium[H3O]+ (aq)[OH3+]-285.796± 0.025kJ/mol19.02267 ±
0.00037
13968-08-6*800
79.2 WaterH2O (l)O-285.796± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*590
79.1 WaterH2O (cr)O-286.268-292.708± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*510
79.1 WaterH2O (cr, eq.press.)O-286.270-292.710± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*509

Most Influential reactions involving C(O)(OH)2 (aq, undissoc)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0003075.1 CO2 (aq, undissoc) H2O (cr,l) → C(O)(OH)2 (aq, undissoc) ΔrH°(298.15 K) = 0 ± 0 cm-1triv


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.