Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
SulfanylSH (g)[SH]142.93143.39± 0.20kJ/mol33.0739 ±
0.0060
13940-21-1*0

Representative Geometry of SH (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of SH (g)

The 20 contributors listed below account only for 84.3% of the provenance of ΔfH° of SH (g).
A total of 28 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
16.07626.1 999 H2S (g) + 999 O2 (g) → 728 OSO (g) + 272 S (cr,l) + 999 H2O (cr,l) ΔrH°(298.15 K) = -115042 ± 60 kcal/molKapustinskii 1958
14.27632.1 SH (g) → H (g) S (g) ΔrH°(0 K) = 29245 ± 25 cm-1Zhou 2005
13.67550.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
7.17667.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/molGood 1960, CODATA Key Vals
4.07667.2 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.92 ± 0.07 (×1.139) kcal/molMansson 1963, CODATA Key Vals
3.57635.3 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.317 ± 0.002 eVBreyer 1981
3.57635.2 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.317 ± 0.002 eVKitsopoulos 1989, Shiell 2000a
2.87535.2 S (cr,l) → S2 (g) ΔrG°(570 K) = 9.483 ± 0.138 (×1.682) kcal/molDrowart 1968, Detry 1967, 3rd Law
1.97543.11 S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g) ΔrH°(0 K) = 75.51 ± 0.25 kcal/molFeller 2008
1.97543.10 S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g) ΔrH°(0 K) = 75.40 ± 0.25 kcal/molKarton 2006, Karton 2011
1.87562.1 SO (g) → S (g) O (g) ΔrH°(0 K) = 43275 ± 5 cm-1Clerbaux 1994
1.87535.4 S (cr,l) → S2 (g) ΔrG°(600 K) = 8.57 ± 0.29 kcal/molBraune 1951, West 1929, Gurvich TPIS, 3rd Law
1.87633.12 SH (g) → H (g) S (g) ΔrH°(0 K) = 83.69 ± 0.20 kcal/molFeller 2008
1.87666.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O) ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.325) kcal/molMcCullough 1953, CODATA Key Vals
1.57635.5 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.314 ± 0.003 eVJanousek 1981
1.47628.1 H2S (g) + 3/2 O2 (g) → OSO (g) H2O (cr,l) ΔrH°(298.15 K) = -134.24 ± 0.16 kcal/molKapustinskii 1958
1.47641.3 H2S (g) → H (g) SH (g) ΔrH°(0 K) = 31430 ± 20 (×1.384) cm-1Cook 2001
1.37537.4 S2 (g) + 2 H2 (g) → 2 H2S (g) ΔrG°(1515 K) = -31.42 ± 0.80 (×1.61) kJ/molRandall 1918, Gurvich TPIS, 2nd Law
1.27633.13 SH (g) → H (g) S (g) ΔrH°(0 K) = 349.53 ± 1.00 kJ/molCsaszar 2003a, note unc
1.27667.3 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.044) kcal/molWaddington 1956, Mansson 1963, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of SH (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.3 Sulfanylium[SH]+ (g)[SH+]1148.481148.48± 0.20kJ/mol33.0734 ±
0.0060
12273-42-6*0
86.1 Hydrosulfide[SH]- (g)[SH-]-80.51-80.51± 0.19kJ/mol33.0745 ±
0.0060
15035-72-0*0
85.4 Hydrogen sulfideH2S (g)S-17.35-20.27± 0.19kJ/mol34.0819 ±
0.0060
7783-06-4*0
85.1 Sulfoniumyl[H2S]+ (g)[SH2+]992.68989.77± 0.19kJ/mol34.0813 ±
0.0060
26453-60-1*0
61.1 Monosulfur anionS- (g)[S-]76.4878.54± 0.14kJ/mol32.0665 ±
0.0060
14337-03-2*0
61.1 SulfurS (g)[S]276.89279.14± 0.14kJ/mol32.0660 ±
0.0060
7704-34-9*0
61.0 Monosulfur cationS+ (g)[S+]1276.481278.27± 0.14kJ/mol32.0655 ±
0.0060
14701-12-3*0
60.9 DisulfurS2 (g)S=S127.49127.80± 0.27kJ/mol64.1320 ±
0.0120
23550-45-0*0
60.0 Sulfur atom dication[S]+2 (g)[S++]3528.243531.94± 0.14kJ/mol32.0649 ±
0.0060
14127-58-3*0
58.4 Sulfur monoxideSO (g)S=O6.026.07± 0.13kJ/mol48.0654 ±
0.0060
13827-32-2*0

Most Influential reactions involving SH (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9997634.1 SH (g) → [SH]+ (g) ΔrH°(0 K) = 84057.5 ± 3 cm-1Hsu 1994, Milan 1996, as quoted by NIST WebBook
0.2717635.2 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.317 ± 0.002 eVKitsopoulos 1989, Shiell 2000a
0.2717635.3 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.317 ± 0.002 eVBreyer 1981
0.2687632.1 SH (g) → H (g) S (g) ΔrH°(0 K) = 29245 ± 25 cm-1Zhou 2005
0.1207635.5 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.314 ± 0.003 eVJanousek 1981
0.0957641.3 H2S (g) → H (g) SH (g) ΔrH°(0 K) = 31430 ± 20 (×1.384) cm-1Cook 2001
0.0457641.1 H2S (g) → H (g) SH (g) ΔrH°(0 K) = 31480 ± 40 cm-1Schnieder 1990
0.0457641.2 H2S (g) → H (g) SH (g) ΔrH°(0 K) = 31440 ± 40 cm-1Wilson 1996, note unc2
0.0347633.12 SH (g) → H (g) S (g) ΔrH°(0 K) = 83.69 ± 0.20 kcal/molFeller 2008
0.0247633.13 SH (g) → H (g) S (g) ΔrH°(0 K) = 349.53 ± 1.00 kJ/molCsaszar 2003a, note unc
0.0167632.2 SH (g) → H (g) S (g) ΔrH°(0 K) = 29300 ± 100 cm-1Morley 1993
0.0157633.11 SH (g) → H (g) S (g) ΔrH°(0 K) = 83.71 ± 0.30 kcal/molKarton 2011
0.0157641.12 H2S (g) → H (g) SH (g) ΔrH°(0 K) = 89.85 ± 0.20 kcal/molFeller 2008
0.0137642.2 H2S (g) Br (g) → SH (g) HBr (g) ΔrG°(370 K) = 2.68 ± 0.33 kcal/molNicovich 1992, 3rd Law
0.0107635.4 [SH]- (g) → SH (g) ΔrH°(0 K) = 2.319 ± 0.010 eVSteiner 1968
0.0107633.14 SH (g) → H (g) S (g) ΔrH°(0 K) = 349.9 ± 1.5 kJ/molPeebles 2002, est unc
0.0087642.1 H2S (g) Br (g) → SH (g) HBr (g) ΔrH°(370 K) = 3.54 ± 0.23 (×1.756) kcal/molNicovich 1992, 2nd Law
0.0067641.11 H2S (g) → H (g) SH (g) ΔrH°(0 K) = 89.89 ± 0.30 kcal/molKarton 2011
0.0067638.1 1/2 H2 (g) S (g) → SH (g) ΔrH°(0 K) = -134.42 ± 1.9 kJ/molNagy 2011
0.0047643.1 H2S (g) OH (g) → H2O (g) SH (g) ΔrH°(0 K) = -116.1 ± 1.5 kJ/molPeebles 2002, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.