Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Sulfur dioxide | OSO (g) | | -294.13 | -296.68 | ± 0.13 | kJ/mol | 64.0648 ± 0.0060 | 7446-09-5*0 |
|
Representative Geometry of OSO (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of OSO (g)The 7 contributors listed below account for 91.9% of the provenance of ΔfH° of OSO (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 39.8 | 7550.1 | S (cr,l) + O2 (g) → OSO (g)  | ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/mol | Eckman 1929, note SO2 | 20.8 | 7667.1 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/mol | Good 1960, CODATA Key Vals | 11.8 | 7667.2 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.92 ± 0.07 (×1.139) kcal/mol | Mansson 1963, CODATA Key Vals | 6.3 | 7535.2 | 2 S (cr,l) → S2 (g)  | ΔrG°(570 K) = 9.483 ± 0.138 (×1.682) kcal/mol | Drowart 1968, Detry 1967, 3rd Law | 5.2 | 7666.1 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O)  | ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.325) kcal/mol | McCullough 1953, CODATA Key Vals | 4.0 | 7535.4 | 2 S (cr,l) → S2 (g)  | ΔrG°(600 K) = 8.57 ± 0.29 kcal/mol | Braune 1951, West 1929, Gurvich TPIS, 3rd Law | 3.6 | 7667.3 | S (cr,l) + 3/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O)  | ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.044) kcal/mol | Waddington 1956, Mansson 1963, est unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of OSO (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Sulfur monoxide | SO (g) | | 6.02 | 6.07 | ± 0.13 | kJ/mol | 48.0654 ± 0.0060 | 13827-32-2*0 | 98.7 | Oxosulfur | [SO]+ (g) | | 999.33 | 999.93 | ± 0.13 | kJ/mol | 48.0649 ± 0.0060 | 767269-11-4*0 | 98.3 | Sulfonyl cation | [OSO]+ (g) | | 897.07 | 894.81 | ± 0.13 | kJ/mol | 64.0643 ± 0.0060 | 12439-77-9*0 | 95.3 | Sulfur dioxide | OSO (aq, undissoc) | | | -322.82 | ± 0.14 | kJ/mol | 64.0648 ± 0.0060 | 7446-09-5*1000 | 93.8 | Sulfurous acid | S(O)(OH)2 (aq, undissoc) | | | -608.62 | ± 0.14 | kJ/mol | 82.0801 ± 0.0061 | 7782-99-2*1000 | 93.4 | Sulfuric acid | OS(O)(OH)2 (cr,l) | | -811.80 | -813.80 | ± 0.13 | kJ/mol | 98.0795 ± 0.0061 | 7664-93-9*500 | 90.9 | Sulfur | S (g) | | 276.89 | 279.14 | ± 0.14 | kJ/mol | 32.0660 ± 0.0060 | 7704-34-9*0 | 90.9 | Monosulfur anion | S- (g) | | 76.48 | 78.54 | ± 0.14 | kJ/mol | 32.0665 ± 0.0060 | 14337-03-2*0 | 90.7 | Monosulfur cation | S+ (g) | | 1276.48 | 1278.27 | ± 0.14 | kJ/mol | 32.0655 ± 0.0060 | 14701-12-3*0 | 90.5 | Disulfur | S2 (g) | | 127.49 | 127.80 | ± 0.27 | kJ/mol | 64.1320 ± 0.0120 | 23550-45-0*0 |
|
Most Influential reactions involving OSO (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.999 | 7568.1 | OSO (g) → SO (g) + O (g)  | ΔrH°(0 K) = 45725.3 ± 0.2 cm-1 | Becker 1995, Becker 1993, Braatz 1998, note unc2 | 0.994 | 7556.1 | OSO (g) → OSO (aq, undissoc)  | ΔrH°(298.15 K) = -26.150 ± 0.040 kJ/mol | NBS Tables 1989, NBS TN270 | 0.970 | 7665.1 | OSO (g) + 1/2 O2 (g) + H2O (cr,l) → OS(O)(OH)2 (cr,l)  | ΔrH°(298.15 K) = -231.329 ± 0.040 kJ/mol | NBS Tables 1989 | 0.937 | 7545.2 | OSO (g) → [OSO]+ (g)  | ΔrH°(0 K) = 99576 ± 2 cm-1 | Mo 2004 | 0.896 | 7547.1 | [OSO]- (g) → OSO (g)  | ΔrH°(0 K) = 1.107 ± 0.008 eV | Nimlos 1986 | 0.785 | 7555.2 | OSO (cr,l) → OSO (g)  | ΔrH°(263.13 K) = 5.96 ± 0.5 kcal/mol | Giauque 1938a, WinTable 2003, est unc | 0.704 | 7687.5 | S(O)(OH)2 (g, cis) → H2O (g) + OSO (g)  | ΔrH°(0 K) = -5.27 ± 0.25 kcal/mol | Misiewicz 2020, est unc | 0.458 | 7582.1 | OSO (g) + 1/2 O2 (g) → OS(O)O (l)  | ΔrH°(298.15 K) = -144.21 ± 0.40 kJ/mol | NBS Tables 1989 | 0.398 | 7550.1 | S (cr,l) + O2 (g) → OSO (g)  | ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/mol | Eckman 1929, note SO2 | 0.331 | 7626.1 | 999 H2S (g) + 999 O2 (g) → 728 OSO (g) + 272 S (cr,l) + 999 H2O (cr,l)  | ΔrH°(298.15 K) = -115042 ± 60 kcal/mol | Kapustinskii 1958 | 0.293 | 7589.14 | OSO (g) + 1/2 O2 (g) → OS(O)O (g)  | ΔrG°(925 K) = -11.77 ± 0.36 kJ/mol | Kapustinskii 1936, Kapustinskii 1936a, Gurvich TPIS, 3rd Law | 0.231 | 7560.9 | SOO (g) → OSO (g)  | ΔrH°(0 K) = -120.54 ± 1.0 kcal/mol | Grant 2009, Feller 2008 | 0.214 | 7555.1 | OSO (cr,l) → OSO (g)  | ΔrH°(298.15 K) = 23.7 ± 4.0 kJ/mol | NBS Tables 1989, NBS TN270 | 0.204 | 7558.7 | S(OO) (g) → OSO (g)  | ΔrH°(0 K) = -110.38 ± 1.2 kcal/mol | Ruscic W1RO | 0.198 | 7589.10 | OSO (g) + 1/2 O2 (g) → OS(O)O (g)  | ΔrG°(985 K) = -6.44 ± 0.36 (×1.215) kJ/mol | Bodenstein 1905, Gurvich TPIS, 3rd Law | 0.191 | 7710.4 | OS(OH)O (g) + OS(O)O (g) → OHS(O)(O)O (g, staggered) + OSO (g)  | ΔrH°(0 K) = -2.20 ± 0.85 kcal/mol | Ruscic W1RO | 0.174 | 7558.4 | S(OO) (g) → OSO (g)  | ΔrH°(0 K) = -109.06 ± 1.3 kcal/mol | Ruscic G4 | 0.170 | 7710.1 | OS(OH)O (g) + OS(O)O (g) → OHS(O)(O)O (g, staggered) + OSO (g)  | ΔrH°(0 K) = -3.57 ± 0.90 kcal/mol | Ruscic G3X | 0.160 | 7560.7 | SOO (g) → OSO (g)  | ΔrH°(0 K) = -120.57 ± 1.2 kcal/mol | Ruscic W1RO | 0.151 | 7589.12 | OSO (g) + 1/2 O2 (g) → OS(O)O (g)  | ΔrG°(940 K) = -10.4 ± 0.5 kJ/mol | Taylor 1931, Gurvich TPIS, 3rd Law |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov [DOI: 10.17038/CSE/1885922]
|
4
|
|
D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021)
[DOI: 10.1021/jacs.0c11677]
|
5
|
|
Y. Ren, L. Zhou, A. Mellouki, V. Daƫle, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021)
[DOI: 10.5194/acp2021-228]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
7
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|