Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
AcetaldehydeCH3CHO (g)CC=O-155.02-165.55± 0.23kJ/mol44.0526 ±
0.0017
75-07-0*0

Representative Geometry of CH3CHO (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3CHO (g)

The 20 contributors listed below account only for 38.8% of the provenance of ΔfH° of CH3CHO (g).
A total of 400 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
14.43673.1 CH3CHO (g) H2 (g) → CH3CH2OH (g) ΔrH°(355.15 K) = -16.752 ± 0.100 kcal/molDolliver 1938, note unc
2.73665.3 CH3CHO (g) → 2 C (g) O (g) + 4 H (g) ΔrH°(0 K) = 642.58 ± 0.30 kcal/molKarton 2011
1.83892.11 O(CH2CH2) (g) → CH3CHO (g) ΔrH°(0 K) = -27.56 ± 0.25 kcal/molKarton 2011
1.83802.4 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/molKovacs 2005, Atkinson 1999, 3rd Law
1.53679.1 CH3CHO (g) OH (g) → CH2CH2 (g) HO2 (g) ΔrH°(0 K) = 46.36 ± 0.4 kcal/molWilke 2008, est unc
1.46174.1 CH3C(O)C(O)CH3 (cr,l) → CH3C(O)C(O)CH3 (g) ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/molNicholson 1954
1.33896.2 O(CH2CH2) (g) + 5/2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -312.15 ± 0.14 kcal/molPell 1965, as quoted by Cox 1970
1.33559.1 CH3CH2OH (g) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(305.65 K) = -1408.03 ± 0.40 kJ/molRossini 1932a, Rossini 1934a, note old units, mw conversion
1.3120.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.34203.2 CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -479.39 ± 0.10 kcal/molSnelson 1961
1.23892.12 O(CH2CH2) (g) → CH3CHO (g) ΔrH°(0 K) = -27.37 ± 0.3 kcal/molWilke 2008, est unc
1.03672.1 CH4 (g) H2O (g) → CH3CHO (g) + 3 H2 (g) ΔrH°(0 K) = 217.13 ± 2.0 kJ/molKlippenstein 2017
1.06010.8 CH3C(O)CH3 (g) CH2O (g) → 2 CH3CHO (g) ΔrH°(0 K) = -0.96 ± 0.85 kcal/molRuscic W1RO
0.96087.6 CH3CH2CHO (g) CH3CH3 (g) → CH3CHO (g) CH3CH2CH3 (g) ΔrH°(0 K) = 1.25 ± 2.00 kJ/molKlippenstein 2017
0.91987.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.96010.3 CH3C(O)CH3 (g) CH2O (g) → 2 CH3CHO (g) ΔrH°(0 K) = -0.81 ± 0.9 kcal/molRuscic G3X
0.96010.4 CH3C(O)CH3 (g) CH2O (g) → 2 CH3CHO (g) ΔrH°(0 K) = -0.77 ± 0.90 kcal/molRuscic G4
0.96010.7 CH3C(O)CH3 (g) CH2O (g) → 2 CH3CHO (g) ΔrH°(0 K) = -0.86 ± 0.90 kcal/molRuscic CBS-n
0.84348.7 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 10.13 ± 0.9 kcal/molRuscic W1RO
0.73665.2 CH3CHO (g) → 2 C (g) O (g) + 4 H (g) ΔrH°(0 K) = 642.52 ± 0.56 kcal/molKarton 2011

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CHO (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.2 Acetaldehyde cation[CH3CHO]+ (g)CC=[O+]831.96821.99± 0.23kJ/mol44.0520 ±
0.0017
36505-03-0*0
78.7 AcetaldehydeCH3CHO (cr,l)CC=O-187.05-191.77± 0.29kJ/mol44.0526 ±
0.0017
75-07-0*500
61.1 AcetylCH3CO (g)C[C]=O-3.45-10.02± 0.30kJ/mol43.0446 ±
0.0016
3170-69-2*0
31.7 EthanolCH3CH2OH (g)CCO-217.32-235.04± 0.21kJ/mol46.0684 ±
0.0017
64-17-5*0
31.3 EthanolCH3CH2OH (l)CCO-269.75-277.51± 0.21kJ/mol46.0684 ±
0.0017
64-17-5*500
30.9 2,3-ButanedioneCH3C(O)C(O)CH3 (g)CC(=O)C(=O)C-310.56-327.12± 0.63kJ/mol86.0892 ±
0.0033
431-03-8*0
28.2 AcetoneCH3C(O)CH3 (g)CC(=O)C-199.99-216.93± 0.27kJ/mol58.0791 ±
0.0025
67-64-1*0
28.2 AcetoneCH3C(O)CH3 (cr,l)CC(=O)C-244.59-247.71± 0.27kJ/mol58.0791 ±
0.0025
67-64-1*500
27.2 2-PropanolCH3CH(OH)CH3 (g)CC(O)C-248.67-272.76± 0.27kJ/mol60.0950 ±
0.0025
67-63-0*0
26.7 2-PropanolCH3CH(OH)CH3 (cr,l)CC(O)C-305.39-318.20± 0.27kJ/mol60.0950 ±
0.0025
67-63-0*500

Most Influential reactions involving CH3CHO (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7623802.4 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/molKovacs 2005, Atkinson 1999, 3rd Law
0.4923666.1 CH3CHO (g) → [CH3CHO]+ (g) ΔrH°(0 K) = 82505 ± 5 cm-1Walsh 1946
0.4923666.2 CH3CHO (g) → [CH3CHO]+ (g) ΔrH°(0 K) = 82508 ± 5 cm-1Knowles 1974
0.4373680.4 CH3CHO (cr,l) → CH3CHO (g) ΔrH°(294.15 K) = 6.307 ± 0.063 kcal/molColeman 1949, note unc
0.3523673.1 CH3CHO (g) H2 (g) → CH3CH2OH (g) ΔrH°(355.15 K) = -16.752 ± 0.100 kcal/molDolliver 1938, note unc
0.2013669.9 [CH3CHO]- (g) → CH3CHO (g) ΔrH°(0 K) = -0.960 ± 0.050 eVRuscic W1RO
0.1903680.2 CH3CHO (cr,l) → CH3CHO (g) ΔrH°(298.15 K) = 26.11 ± 0.40 kJ/molNBS Tables 1989
0.1813712.6 CH3COH (g, syn singlet) → CH3CHO (g) ΔrH°(0 K) = -224.37 ± 2.0 kJ/molKlippenstein 2017
0.1626214.6 CH3C(O)CHCH2 (g, trans) CH2CH2 (g) → CH3CHO (g) CH2CHCHCH2 (g) ΔrH°(0 K) = 1.22 ± 0.50 kcal/molPorterfield 2015, est unc
0.1566263.6 HCCCO (g) CH3CHO (g) → CHCCHO (g) CH3CO (g) ΔrH°(0 K) = -4.46 ± 2.0 kJ/molKlippenstein 2017
0.1523726.7 CH3OCH (g, anti singlet) → CH3CHO (g) ΔrH°(0 K) = -284.81 ± 2.0 kJ/molKlippenstein 2017
0.1484520.6 OCHCO (g) CH3CHO (g) → OCHCHO (g, trans) CH3CO (g) ΔrH°(0 K) = 5.72 ± 2.00 kJ/molKlippenstein 2017
0.1456068.6 CH3C(OH)CH3 (g) CH3CHO (g) → CH3C(O)CH3 (g) CH3CHOH (g, gauche-anti) ΔrH°(0 K) = -9.98 ± 2.00 kJ/molKlippenstein 2017
0.1416077.6 CH3CH(O)CH3 (g) CH3CHO (g) → CH3C(O)CH3 (g) CH3CH2O (g, X 2A") ΔrH°(0 K) = -18.51 ± 2.00 kJ/molKlippenstein 2017
0.1353669.5 [CH3CHO]- (g) → CH3CHO (g) ΔrH°(0 K) = -0.939 ± 0.061 eVRuscic G4
0.1343709.7 CH3COH (g, anti singlet) → CH3CHO (g) ΔrH°(0 K) = -50.67 ± 0.50 kcal/molSchreiner 2011, est unc
0.1243892.11 O(CH2CH2) (g) → CH3CHO (g) ΔrH°(0 K) = -27.56 ± 0.25 kcal/molKarton 2011
0.1123680.1 CH3CHO (cr,l) → CH3CHO (g) ΔrH°(298.15 K) = 26.12 ± 0.52 kJ/molMajer 1985, Coleman 1949
0.0893694.10 CH3CHO (g) → CH2CHOH (g, anti) ΔrH°(0 K) = 10.78 ± 0.40 kcal/molEstep 2017, est unc
0.0876229.5 CH3CHCO (g) CH2O (g) → CH2CO (g) CH3CHO (g) ΔrH°(0 K) = -9.91 ± 0.85 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.