Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Carbon monoxide | CO (g) | | -113.803 | -110.523 | ± 0.026 | kJ/mol | 28.01010 ± 0.00085 | 630-08-0*0 |
|
Representative Geometry of CO (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CO (g)The 17 contributors listed below account for 90.4% of the provenance of ΔfH° of CO (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 62.9 | 1818.5 | C (graphite) + CO2 (g) → 2 CO (g)  | ΔrG°(1165 K) = -33.545 ± 0.058 kJ/mol | Smith 1946, note COf, 3rd Law | 4.4 | 1764.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 3.6 | 1814.7 | CO2 (g) → CO (g) + O+ (g)  | ΔrH°(0 K) = 19.0701 ± 0.0010 (×1.114) eV | Liu 2003, note unc | 3.1 | 1816.4 | CO (g) + 1/2 O2 (g) → CO2 (g)  | ΔrH°(303.15 K) = -282.974 ± 0.116 kJ/mol | Rossini 1931a, Rossini 1931b, Rossini 1939, note CO | 2.3 | 1818.1 | C (graphite) + CO2 (g) → 2 CO (g)  | ΔrG°(1236.8 K) = -46.195 ± 0.3 kJ/mol | Peters 1958, note COe, 3rd Law | 1.9 | 1816.6 | CO (g) + 1/2 O2 (g) → CO2 (g)  | ΔrH°(293.15 K) = -283.036 ± 0.146 kJ/mol | Fenning 1933, note COb | 1.8 | 1816.3 | CO (g) + 1/2 O2 (g) → CO2 (g)  | ΔrG°(1173 K) = -180.655 ± 0.150 kJ/mol | Caneiro 1981, note COc | 1.7 | 1764.5 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/mol | Fraser 1952, note CO2f | 1.7 | 1764.4 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/mol | Lewis 1965, note CO2d | 1.2 | 1764.9 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/mol | Prosen 1944a, Cox 1970, NBS TN270, NBS Tables 1989 | 1.1 | 1815.5 | CO2 (g) → [CO]+ (g) + O (g)  | ΔrH°(0 K) = 19.4687 ± 0.0010 (×1.957) eV | Liu 2003, note unc | 1.0 | 1810.2 | CO (g) → C+ (g) + O (g)  | ΔrH°(0 K) = 22.3713 ± 0.0015 eV | Ng 2007 | 0.8 | 1764.6 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/mol | Hawtin 1966, note CO2e | 0.6 | 1764.2 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/mol | Dewey 1938, note CO2, Rossini 1938, note CO2c | 0.6 | 1764.3 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/mol | Jessup 1938, note CO2a, Rossini 1938, note CO2c | 0.5 | 1817.3 | CO (g) + H2O (g) → CO2 (g) + H2 (g)  | ΔrG°(893 K) = -6.369 ± 0.283 kJ/mol | Meyer 1938, note COi, 3rd Law | 0.5 | 1264.4 | NNO (g) + CO (g) → CO2 (g) + N2 (g)  | ΔrH°(293.15 K) = -365.642 ± 0.243 kJ/mol | Fenning 1933, note N2Oa |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CO (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Carbon monoxide | CO (g, singlet) | | -113.803 | -110.523 | ± 0.026 | kJ/mol | 28.01010 ± 0.00085 | 630-08-0*2 | 100.0 | Carbon monoxide | CO (g, triplet) | | 465.579 | 469.286 | ± 0.026 | kJ/mol | 28.01010 ± 0.00085 | 630-08-0*1 | 99.0 | Carbon monoxide cation | [CO]+ (g) | | 1238.306 | 1241.586 | ± 0.026 | kJ/mol | 28.00955 ± 0.00085 | 12144-04-6*0 | 35.4 | Carbon dioxide | CO2 (g) | | -393.108 | -393.474 | ± 0.015 | kJ/mol | 44.00950 ± 0.00100 | 124-38-9*0 | 30.5 | Carbon dioxide cation | [CO2]+ (g) | | 936.092 | 936.927 | ± 0.017 | kJ/mol | 44.00895 ± 0.00100 | 12181-61-2*0 | 30.1 | Ketene | CH2CO (g) | | -45.34 | -48.46 | ± 0.12 | kJ/mol | 42.0367 ± 0.0016 | 463-51-4*0 | 30.1 | Ketene | CH2CO (g, singlet) | | -45.34 | -48.46 | ± 0.12 | kJ/mol | 42.0367 ± 0.0016 | 463-51-4*2 | 30.1 | Ketene cation | [CH2CO]+ (g) | | 882.23 | 879.06 | ± 0.12 | kJ/mol | 42.0361 ± 0.0016 | 64999-16-2*0 | 22.5 | Carbon atom | C (g) | | 711.399 | 716.884 | ± 0.047 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*0 | 22.5 | Carbon atom | C (g, triplet) | | 711.399 | 716.884 | ± 0.047 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*1 |
|
Most Influential reactions involving CO (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 1819.1 | CO (g, singlet) → CO (g)  | ΔrH°(0 K) = 0 ± 0 cm-1 | triv | 0.999 | 3347.1 | CH2CO (g, singlet) → CH2 (g, singlet) + CO (g)  | ΔrH°(0 K) = 30116.2 ± 0.4 cm-1 | Chen 1988 | 0.982 | 1803.1 | CO (g) → [CO]+ (g)  | ΔrH°(0 K) = 113027.5 ± 0.3 cm-1 | Mellinger 1996 | 0.898 | 4849.3 | CO (g) + Br2 (g) → CBr2O (g)  | ΔrG°(444 K) = 6.169 ± 0.088 kcal/mol | Dunning 1972, 3rd Law | 0.795 | 4846.1 | ClCO (g) → Cl (g) + CO (g)  | ΔrG°(222.5 K) = 2.32 ± 0.13 kcal/mol | Nicovich 1990a, 3rd Law | 0.682 | 1818.5 | C (graphite) + CO2 (g) → 2 CO (g)  | ΔrG°(1165 K) = -33.545 ± 0.058 kJ/mol | Smith 1946, note COf, 3rd Law | 0.458 | 2533.9 | CO (g) + [NH4]+ (g) → [HCO]+ (g) + NH3 (g)  | ΔrH°(0 K) = 259.89 ± 0.3 kJ/mol | Czako 2008 | 0.402 | 4809.1 | CO (g) + Cl2 (g) → CCl2O (g)  | ΔrH°(298.15 K) = -25.90 ± 0.10 kcal/mol | Stull 1961, as quoted by Cox 1970 | 0.402 | 4809.2 | CO (g) + Cl2 (g) → CCl2O (g)  | ΔrH°(298.15 K) = -25.95 ± 0.10 kcal/mol | Lord 1970, as quoted by Pedley 1986 | 0.345 | 4817.5 | ClCOCl (g, cis) → CO (g) + Cl2 (g)  | ΔrH°(0 K) = -192 ± 6 kJ/mol | McDowell 2002, est unc | 0.315 | 4817.4 | ClCOCl (g, cis) → CO (g) + Cl2 (g)  | ΔrH°(0 K) = -45.72 ± 1.50 kcal/mol | Ruscic W1RO | 0.280 | 3357.11 | HCCO (g) → CH (g) + CO (g)  | ΔrH°(0 K) = 302.2 ± 1.1 kJ/mol | Szalay 2004 | 0.239 | 3645.9 | (OH)(CO) (g, vdW) → OH (g) + CO (g)  | ΔrH°(0 K) = 310 ± 150 cm-1 | Pond 2003, Marshall 2003, est unc | 0.239 | 3645.8 | (OH)(CO) (g, vdW) → OH (g) + CO (g)  | ΔrH°(0 K) = 330 ± 150 cm-1 | Lester 2001, est unc | 0.234 | 2531.11 | [HCO]+ (g) → H+ (g) + CO (g)  | ΔrH°(0 K) = 586.51 ± 0.2 kJ/mol | Czako 2008 | 0.232 | 1991.3 | [C2H7]+ (g) + CO (g) → [HCO]+ (g) + CH3CH3 (g)  | ΔrG°(298.15 K) = 1.43 ± 0.3 kcal/mol | Mackay 1981, 3rd Law, note unc5 | 0.219 | 1806.9 | [CO]- (g) → CO (g)  | ΔrH°(0 K) = -1.499 ± 0.050 eV | Ruscic W1RO | 0.201 | 5406.5 | [OCCO]- (g) → 2 CO (g)  | ΔrH°(0 K) = -19.46 ± 1.50 kcal/mol | Ruscic W1RO | 0.196 | 5214.5 | [CH3C(O)CH2]+ (g) → [CH3CH2]+ (g) + CO (g)  | ΔrH°(0 K) = 0.171 ± 0.040 eV | Ruscic W1RO | 0.187 | 4817.2 | ClCOCl (g, cis) → CO (g) + Cl2 (g)  | ΔrH°(0 K) = -42.83 ± 1.60 (×1.215) kcal/mol | Ruscic G4 |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov |
4
|
|
J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017)
[DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
|
5
|
|
Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017)
[DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|