Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Carbon monoxideCO (g)[C-]#[O+]-113.803-110.523± 0.026kJ/mol28.01010 ±
0.00085
630-08-0*0

Representative Geometry of CO (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CO (g)

The 17 contributors listed below account for 90.4% of the provenance of ΔfH° of CO (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
62.91818.5 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1165 K) = -33.545 ± 0.058 kJ/molSmith 1946, note COf, 3rd Law
4.41764.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
3.61814.7 CO2 (g) → CO (g) O+ (g) ΔrH°(0 K) = 19.0701 ± 0.0010 (×1.114) eVLiu 2003, note unc
3.11816.4 CO (g) + 1/2 O2 (g) → CO2 (g) ΔrH°(303.15 K) = -282.974 ± 0.116 kJ/molRossini 1931a, Rossini 1931b, Rossini 1939, note CO
2.31818.1 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1236.8 K) = -46.195 ± 0.3 kJ/molPeters 1958, note COe, 3rd Law
1.91816.6 CO (g) + 1/2 O2 (g) → CO2 (g) ΔrH°(293.15 K) = -283.036 ± 0.146 kJ/molFenning 1933, note COb
1.81816.3 CO (g) + 1/2 O2 (g) → CO2 (g) ΔrG°(1173 K) = -180.655 ± 0.150 kJ/molCaneiro 1981, note COc
1.71764.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
1.71764.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
1.21764.9 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
1.11815.5 CO2 (g) → [CO]+ (g) O (g) ΔrH°(0 K) = 19.4687 ± 0.0010 (×1.957) eVLiu 2003, note unc
1.01810.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
0.81764.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
0.61764.2 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/molDewey 1938, note CO2, Rossini 1938, note CO2c
0.61764.3 C (graphite) O2 (g) → CO2 (g) ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/molJessup 1938, note CO2a, Rossini 1938, note CO2c
0.51817.3 CO (g) H2O (g) → CO2 (g) H2 (g) ΔrG°(893 K) = -6.369 ± 0.283 kJ/molMeyer 1938, note COi, 3rd Law
0.51264.4 NNO (g) CO (g) → CO2 (g) N2 (g) ΔrH°(293.15 K) = -365.642 ± 0.243 kJ/molFenning 1933, note N2Oa

Top 10 species with enthalpies of formation correlated to the ΔfH° of CO (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Carbon monoxideCO (g, singlet)[C-]#[O+]-113.803-110.523± 0.026kJ/mol28.01010 ±
0.00085
630-08-0*2
100.0 Carbon monoxideCO (g, triplet)[C-]#[O+]465.579469.286± 0.026kJ/mol28.01010 ±
0.00085
630-08-0*1
99.0 Carbon monoxide cation[CO]+ (g)[C]#[O+]1238.3061241.586± 0.026kJ/mol28.00955 ±
0.00085
12144-04-6*0
35.4 Carbon dioxideCO2 (g)C(=O)=O-393.108-393.474± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
30.5 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.092936.927± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
30.1 KeteneCH2CO (g)C=C=O-45.34-48.46± 0.12kJ/mol42.0367 ±
0.0016
463-51-4*0
30.1 KeteneCH2CO (g, singlet)C=C=O-45.34-48.46± 0.12kJ/mol42.0367 ±
0.0016
463-51-4*2
30.1 Ketene cation[CH2CO]+ (g)C=C=[O+]882.23879.06± 0.12kJ/mol42.0361 ±
0.0016
64999-16-2*0
22.5 Carbon atomC (g)[C]711.399716.884± 0.047kJ/mol12.01070 ±
0.00080
7440-44-0*0
22.5 Carbon atomC (g, triplet)[C]711.399716.884± 0.047kJ/mol12.01070 ±
0.00080
7440-44-0*1

Most Influential reactions involving CO (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0001819.1 CO (g, singlet) → CO (g) ΔrH°(0 K) = 0 ± 0 cm-1triv
0.9993347.1 CH2CO (g, singlet) → CH2 (g, singlet) CO (g) ΔrH°(0 K) = 30116.2 ± 0.4 cm-1Chen 1988
0.9821803.1 CO (g) → [CO]+ (g) ΔrH°(0 K) = 113027.5 ± 0.3 cm-1Mellinger 1996
0.8984849.3 CO (g) Br2 (g) → CBr2O (g) ΔrG°(444 K) = 6.169 ± 0.088 kcal/molDunning 1972, 3rd Law
0.7954846.1 ClCO (g) → Cl (g) CO (g) ΔrG°(222.5 K) = 2.32 ± 0.13 kcal/molNicovich 1990a, 3rd Law
0.6821818.5 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1165 K) = -33.545 ± 0.058 kJ/molSmith 1946, note COf, 3rd Law
0.4582533.9 CO (g) [NH4]+ (g) → [HCO]+ (g) NH3 (g) ΔrH°(0 K) = 259.89 ± 0.3 kJ/molCzako 2008
0.4024809.1 CO (g) Cl2 (g) → CCl2O (g) ΔrH°(298.15 K) = -25.90 ± 0.10 kcal/molStull 1961, as quoted by Cox 1970
0.4024809.2 CO (g) Cl2 (g) → CCl2O (g) ΔrH°(298.15 K) = -25.95 ± 0.10 kcal/molLord 1970, as quoted by Pedley 1986
0.3454817.5 ClCOCl (g, cis) → CO (g) Cl2 (g) ΔrH°(0 K) = -192 ± 6 kJ/molMcDowell 2002, est unc
0.3154817.4 ClCOCl (g, cis) → CO (g) Cl2 (g) ΔrH°(0 K) = -45.72 ± 1.50 kcal/molRuscic W1RO
0.2803357.11 HCCO (g) → CH (g) CO (g) ΔrH°(0 K) = 302.2 ± 1.1 kJ/molSzalay 2004
0.2393645.9 (OH)(CO) (g, vdW) → OH (g) CO (g) ΔrH°(0 K) = 310 ± 150 cm-1Pond 2003, Marshall 2003, est unc
0.2393645.8 (OH)(CO) (g, vdW) → OH (g) CO (g) ΔrH°(0 K) = 330 ± 150 cm-1Lester 2001, est unc
0.2342531.11 [HCO]+ (g) → H+ (g) CO (g) ΔrH°(0 K) = 586.51 ± 0.2 kJ/molCzako 2008
0.2321991.3 [C2H7]+ (g) CO (g) → [HCO]+ (g) CH3CH3 (g) ΔrG°(298.15 K) = 1.43 ± 0.3 kcal/molMackay 1981, 3rd Law, note unc5
0.2191806.9 [CO]- (g) → CO (g) ΔrH°(0 K) = -1.499 ± 0.050 eVRuscic W1RO
0.2015406.5 [OCCO]- (g) → 2 CO (g) ΔrH°(0 K) = -19.46 ± 1.50 kcal/molRuscic W1RO
0.1965214.5 [CH3C(O)CH2]+ (g) → [CH3CH2]+ (g) CO (g) ΔrH°(0 K) = 0.171 ± 0.040 eVRuscic W1RO
0.1874817.2 ClCOCl (g, cis) → CO (g) Cl2 (g) ΔrH°(0 K) = -42.83 ± 1.60 (×1.215) kcal/molRuscic G4


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov
4   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
5   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.