Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
2,3-Butanedione(CH3CO)2 (g)CC(=O)C(=O)C-310.42-326.98± 0.70kJ/mol86.0892 ±
0.0033
431-03-8*0

Top contributors to the provenance of ΔfH° of (CH3CO)2 (g)

The 20 contributors listed below account only for 84.8% of the provenance of ΔfH° of (CH3CO)2 (g).
A total of 58 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
26.55238.1 (CH3CO)2 (g) → CH3CO (g) [CH3CO]+ (g) ΔrH°(0 K) = 10.090 ± 0.006 eVFogleman 2004
23.75237.1 (CH3CO)2 (cr,l) → (CH3CO)2 (g) ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/molNicholson 1954
5.55157.1 CH3C(O)CH3 (g) → [CH3CO]+ (g) CH3 (g) ΔrH°(0 K) = 10.532 ± 0.006 eVBodi 2015
4.85236.1 (CH3CO)2 (cr,l) + 9/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -493.82 ± 0.19 kcal/molNicholson 1954, mw conversion
4.45236.2 (CH3CO)2 (cr,l) + 9/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -493.57 ± 0.20 kcal/molParks 1954, mw conversion
4.33761.2 CH3C(O)OH (g) → OH (g) [CH3CO]+ (g) ΔrH°(0 K) = 11.641 ± 0.008 eVShuman 2010
3.83324.4 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/molKovacs 2005, Atkinson 1999, 3rd Law
3.65237.2 (CH3CO)2 (cr,l) → (CH3CO)2 (g) ΔrH°(298.15 K) = 8.6 ± 0.5 (×1.269) kcal/molSpringall 1954, est unc
1.73259.1 CH3CHO (g) H2 (g) → CH3CH2OH (g) ΔrH°(355.15 K) = -16.752 ± 0.100 kcal/molDolliver 1938, note unc
0.93687.1 CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -479.25 ± 0.24 kcal/molParks 1950a, mw conversion
0.93687.2 CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -479.39 ± 0.10 (×2.484) kcal/molSnelson 1961
0.63761.1 CH3C(O)OH (g) → OH (g) [CH3CO]+ (g) ΔrH°(0 K) = 11.62 ± 0.02 eVTraeger 1982, AE corr, est unc
0.63765.4 CH3C(O)OH (l) → CH3C(O)OH (g) ΔrH°(298.15 K) = 50.3 ± 1.0 kJ/molVerevkin 2000, note unc
0.6118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.45157.3 CH3C(O)CH3 (g) → [CH3CO]+ (g) CH3 (g) ΔrH°(0 K) = 10.516 ± 0.020 eVRennie 2006, AE corr, note unc3
0.43756.11 CH3C(O)OH (g, syn) → 2 C (g) + 4 H (g) + 2 O (g) ΔrH°(0 K) = 764.37 ± 0.30 kcal/molKarton 2011
0.33252.3 CH3CHO (g) → 2 C (g) O (g) + 4 H (g) ΔrH°(0 K) = 642.58 ± 0.30 kcal/molKarton 2011
0.35155.1 CH3C(O)CH3 (g) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -435.42 ± 0.44 kcal/molMiles 1941, note unc, note old units
0.33311.1 CH3CO (g) → [CH3CO]+ (g) ΔrH°(0 K) = 6.95 ± 0.02 eVZamanpour 2008
0.23765.3 CH3C(O)OH (l) → CH3C(O)OH (g) ΔrH°(298.15 K) = 51.6 ± 1.5 kJ/molKonicek 1970

Top 10 species with enthalpies of formation correlated to the ΔfH° of (CH3CO)2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
55.0 Acetylium[CH3CO]+ (g)C[C+]=O666.52659.23± 0.47kJ/mol43.0441 ±
0.0016
15762-07-9*0
42.8 AcetylCH3CO (g)C[C]=O-3.31-9.97± 0.35kJ/mol43.0446 ±
0.0016
3170-69-2*0
35.6 2,3-Butanedione(CH3CO)2 (cr,l)CC(=O)C(=O)C-365.57± 0.54kJ/mol86.0892 ±
0.0033
431-03-8*500
32.3 AcetaldehydeCH3CHO (g)CC=O-155.14-165.61± 0.26kJ/mol44.0526 ±
0.0017
75-07-0*0
31.9 Acetaldehyde cation[CH3CHO]+ (g)CC=[O+]831.85821.88± 0.27kJ/mol44.0520 ±
0.0017
36505-03-0*0
31.6 AcetoneCH3C(O)CH3 (g)CC(=O)C-200.16-216.85± 0.38kJ/mol58.0791 ±
0.0025
67-64-1*0
31.6 AcetoneCH3C(O)CH3 (cr,l)CC(=O)C-245.11-248.22± 0.38kJ/mol58.0791 ±
0.0025
67-64-1*500
30.9 2-PropanolCH3CH(OH)CH3 (g)CC(O)C-249.47-273.57± 0.38kJ/mol60.0950 ±
0.0025
67-63-0*0
30.5 2-PropanolCH3CH(OH)CH3 (cr,l)CC(O)C-306.20-319.01± 0.38kJ/mol60.0950 ±
0.0025
67-63-0*500
26.8 AcetaldehydeCH3CHO (cr,l)CC=O-187.12-191.83± 0.32kJ/mol44.0526 ±
0.0017
75-07-0*500

Most Influential reactions involving (CH3CO)2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8355238.1 (CH3CO)2 (g) → CH3CO (g) [CH3CO]+ (g) ΔrH°(0 K) = 10.090 ± 0.006 eVFogleman 2004
0.4645237.1 (CH3CO)2 (cr,l) → (CH3CO)2 (g) ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/molNicholson 1954
0.0725237.2 (CH3CO)2 (cr,l) → (CH3CO)2 (g) ΔrH°(298.15 K) = 8.6 ± 0.5 (×1.269) kcal/molSpringall 1954, est unc


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.