Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Oxygen atom | O (g) | | 246.844 | 249.229 | ± 0.0021 | kJ/mol | 15.99940 ± 0.00030 | 17778-80-2*0 |
|
Representative Geometry of O (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of O (g)The 4 contributors listed below account for 96.4% of the provenance of ΔfH° of O (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of O (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Oxygen atom | O (g, triplet) | | 246.844 | 249.229 | ± 0.0021 | kJ/mol | 15.99940 ± 0.00030 | 17778-80-2*1 | 99.9 | Oxygen atom anion | O- (g) | | 105.868 | 108.097 | ± 0.0021 | kJ/mol | 15.99995 ± 0.00030 | 14337-01-0*0 | 99.9 | Oxygen atom | O (g, singlet) | | 436.666 | 438.523 | ± 0.0021 | kJ/mol | 15.99940 ± 0.00030 | 17778-80-2*2 | 94.3 | Oxygen atom cation | O+ (g) | | 1560.786 | 1562.644 | ± 0.0021 | kJ/mol | 15.99885 ± 0.00030 | 14581-93-2*0 | 16.7 | Oxygen atom dication | [O]+2 (g) | | 4949.459 | 4953.000 | ± 0.013 | kJ/mol | 15.99830 ± 0.00030 | 14127-63-0*0 | 11.9 | Oxygen atom trication | [O]+3 (g) | | 10249.929 | 10252.880 | ± 0.018 | kJ/mol | 15.99775 ± 0.00030 | 14127-64-1*0 | 8.4 | Oxygen atom tetracation | [O]+4 (g) | | 17719.207 | 17721.064 | ± 0.025 | kJ/mol | 15.99721 ± 0.00030 | 14127-65-2*0 | 6.0 | Nitrogen dioxide | ONO (g) | | 36.859 | 34.052 | ± 0.065 | kJ/mol | 46.00554 ± 0.00060 | 10102-44-0*0 | 5.9 | Chlorooxidanyl | ClO (g) | | 101.125 | 101.716 | ± 0.035 | kJ/mol | 51.45210 ± 0.00095 | 14989-30-1*0 | 5.8 | Dinitrogen tetraoxide | O2NNO2 (g) | | 20.15 | 10.86 | ± 0.14 | kJ/mol | 92.0111 ± 0.0012 | 10544-72-6*0 |
|
Most Influential reactions involving O (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 574.5 | FFO (g, singlet) → 2 F (g) + O (g)  | ΔrH°(0 K) = 41.7 ± 5 kcal/mol | Ruscic W1RO, Ruscic CBS-n | 1.000 | 17.1 | O (g) → O (g, triplet)  | ΔrH°(0 K) = 0.000 ± 0.000 cm-1 | triv | 0.999 | 18.1 | O (g) → O (g, singlet)  | ΔrH°(0 K) = 15867.862 ± 0.005 cm-1 | NIST Atomic Web, est unc | 0.993 | 14.1 | O (g) → O+ (g)  | ΔrH°(0 K) = 109837.02 ± 0.06 cm-1 | Eriksson 1968, Moore 1970, NIST Atomic Web | 0.950 | 40.2 | OOO (g) → O2 (g) + O (g)  | ΔrH°(0 K) = 102.46 ± 0.04 kJ/mol | Taniguchi 1999, note O3d | 0.947 | 1681.1 | ON(O)O (g) → O (g) + ONO (g)  | ΔrH°(0 K) = 17079 ± 15 cm-1 | Johnston 1996, Davis 1993 | 0.925 | 780.1 | ClO (g) → Cl (g) + O (g)  | ΔrH°(0 K) = 22182.3 ± 3 cm-1 | Coxon 1976, note ClO, note ClOa | 0.723 | 1231.7 | ONO (g) → NO (g) + O (g)  | ΔrH°(0 K) = 25128.56 ± 0.03 cm-1 | Michalski 2004 | 0.635 | 600.7 | OFO (g) → F (g) + 2 O (g)  | ΔrH°(0 K) = 11.2 ± 0.3 kcal/mol | Feller 2010 | 0.573 | 3411.6 | O(CHCH) (g, singlet) → 2 C (g) + 2 H (g) + O (g)  | ΔrH°(0 K) = 437.28 ± 0.30 kcal/mol | Karton 2011 | 0.566 | 397.5 | HOOOOH (g) → HOOOH (g) + O (g)  | ΔrH°(0 K) = 47.61 ± 0.7 kcal/mol | Denis 2009, est unc | 0.478 | 1.4 | O2 (g) → 2 O (g)  | ΔrH°(0 K) = 41269.2 ± 0.5 cm-1 | Lewis 1985, note O2b | 0.474 | 15.4 | O- (g) → O (g)  | ΔrH°(0 K) = 11784.675 ± 0.006 cm-1 | Hotop 1999, Blondel 2005, Neumark 1985, Blondel 1995 | 0.424 | 1020.9 | BrO (g) → Br (g) + O (g)  | ΔrH°(0 K) = 19551 ± 35 cm-1 | Kim 2006 | 0.348 | 15.1 | O- (g) → O (g)  | ΔrH°(0 K) = 11784.676 ± 0.007 cm-1 | Blondel 2005, Chaibi 2010 | 0.339 | 3289.6 | CH2CHO (g) → CH2CH (g) + O (g)  | ΔrH°(0 K) = 524.95 ± 1.5 kJ/mol | Tabor 2012 | 0.324 | 3284.6 | CH2CHO (g) → 2 C (g) + 3 H (g) + O (g)  | ΔrH°(0 K) = 2294.29 ± 1.5 kJ/mol | Tabor 2012 | 0.315 | 3550.9 | [CH2OO]- (g) → C (g) + 2 H (g) + 2 O (g)  | ΔrH°(0 K) = 1583.3 ± 2.5 kJ/mol | Karton 2013a | 0.284 | 3542.2 | [CH2(OO)]- (g) → C (g) + 2 H (g) + 2 O (g)  | ΔrH°(0 K) = 431.91 ± 1.72 kcal/mol | Ruscic G3X | 0.261 | 577.2 | [FFO]+ (g, quartet) → 2 F (g) + O (g)  | ΔrH°(0 K) = -241.96 ± 1.60 kcal/mol | Ruscic G4 |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov |
4
|
|
L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017)
[DOI: 10.1021/acs.jctc.6b00970]
|
5
|
|
J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017)
[DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|