Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Acetone | CH3C(O)CH3 (cr,l) | | -245.11 | -248.22 | ± 0.38 | kJ/mol | 58.0791 ± 0.0025 | 67-64-1*500 |
|
Top contributors to the provenance of ΔfH° of CH3C(O)CH3 (cr,l)The 20 contributors listed below account only for 51.9% of the provenance of ΔfH° of CH3C(O)CH3 (cr,l). A total of 164 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 11.4 | 3687.1 | CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -479.25 ± 0.24 kcal/mol | Parks 1950a, mw conversion | 10.6 | 3687.2 | CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -479.39 ± 0.10 (×2.484) kcal/mol | Snelson 1961 | 7.0 | 5157.1 | CH3C(O)CH3 (g) → [CH3CO]+ (g) + CH3 (g)  | ΔrH°(0 K) = 10.532 ± 0.006 eV | Bodi 2015 | 3.6 | 5155.1 | CH3C(O)CH3 (g) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -435.42 ± 0.44 kcal/mol | Miles 1941, note unc, note old units | 2.9 | 3761.2 | CH3C(O)OH (g) → OH (g) + [CH3CO]+ (g)  | ΔrH°(0 K) = 11.641 ± 0.008 eV | Shuman 2010 | 2.3 | 3687.3 | CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(303.15 K) = -2006.33 ± 0.22 (×10.15) kJ/mol | Chao 1965, mw conversion | 2.0 | 5237.1 | (CH3CO)2 (cr,l) → (CH3CO)2 (g)  | ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/mol | Nicholson 1954 | 1.8 | 5161.9 | CH3C(O)CH3 (g) + CH2CH2 (g) → CH3CHO (g) + CH3CHCH2 (g)  | ΔrH°(0 K) = 4.84 ± 0.50 kcal/mol | Porterfield 2015, est unc | 1.7 | 118.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 0.8 | 5163.8 | CH3C(O)CH3 (g) + CH4 (g) → CH2O (g) + CH3CH2CH3 (g)  | ΔrH°(0 K) = 18.67 ± 0.9 kcal/mol | Ruscic W1RO | 0.8 | 5238.1 | (CH3CO)2 (g) → CH3CO (g) + [CH3CO]+ (g)  | ΔrH°(0 K) = 10.090 ± 0.006 eV | Fogleman 2004 | 0.8 | 5162.5 | CH3C(O)CH3 (g) + CH2CH2 (g) → CH2O (g) + CH2C(CH3)2 (g)  | ΔrH°(0 K) = 9.28 ± 0.85 kcal/mol | Ruscic W1RO | 0.7 | 3683.5 | CH3CH(OH)CH3 (g) → CH3CH2CH2OH (g)  | ΔrH°(0 K) = 4.15 ± 0.9 kcal/mol | Ruscic W1RO | 0.7 | 3259.1 | CH3CHO (g) + H2 (g) → CH3CH2OH (g)  | ΔrH°(355.15 K) = -16.752 ± 0.100 kcal/mol | Dolliver 1938, note unc | 0.7 | 5162.2 | CH3C(O)CH3 (g) + CH2CH2 (g) → CH2O (g) + CH2C(CH3)2 (g)  | ΔrH°(0 K) = 8.69 ± 0.90 kcal/mol | Ruscic G4 | 0.7 | 5162.1 | CH3C(O)CH3 (g) + CH2CH2 (g) → CH2O (g) + CH2C(CH3)2 (g)  | ΔrH°(0 K) = 9.05 ± 0.90 kcal/mol | Ruscic G3X | 0.7 | 5162.4 | CH3C(O)CH3 (g) + CH2CH2 (g) → CH2O (g) + CH2C(CH3)2 (g)  | ΔrH°(0 K) = 9.23 ± 0.90 kcal/mol | Ruscic CBS-n | 0.7 | 3684.4 | CH3CH(OH)CH3 (g) + CH3CH2CH3 (g) → CH3CH2OH (g) + CH(CH3)3 (g)  | ΔrH°(0 K) = 2.17 ± 0.9 kcal/mol | Ruscic W1RO | 0.6 | 5165.8 | CH3C(O)CH3 (g) + CH3CH3 (g) → CH3CHO (g) + CH3CH2CH3 (g)  | ΔrH°(0 K) = 7.47 ± 0.85 kcal/mol | Ruscic W1RO | 0.6 | 5163.7 | CH3C(O)CH3 (g) + CH4 (g) → CH2O (g) + CH3CH2CH3 (g)  | ΔrH°(0 K) = 19.02 ± 1.0 kcal/mol | Ruscic CBS-n |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)CH3 (cr,l) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Acetone | CH3C(O)CH3 (g) | | -200.16 | -216.85 | ± 0.38 | kJ/mol | 58.0791 ± 0.0025 | 67-64-1*0 | 97.5 | 2-Propanol | CH3CH(OH)CH3 (g) | | -249.47 | -273.57 | ± 0.38 | kJ/mol | 60.0950 ± 0.0025 | 67-63-0*0 | 96.2 | 2-Propanol | CH3CH(OH)CH3 (cr,l) | | -306.20 | -319.01 | ± 0.38 | kJ/mol | 60.0950 ± 0.0025 | 67-63-0*500 | 46.4 | Acetylium | [CH3CO]+ (g) | | 666.52 | 659.23 | ± 0.47 | kJ/mol | 43.0441 ± 0.0016 | 15762-07-9*0 | 31.6 | 2,3-Butanedione | (CH3CO)2 (g) | | -310.42 | -326.98 | ± 0.70 | kJ/mol | 86.0892 ± 0.0033 | 431-03-8*0 | 29.8 | Acetonate | [CH3C(O)CH2]- (g) | | -187.92 | -201.47 | ± 0.98 | kJ/mol | 57.0717 ± 0.0024 | 24262-31-5*0 | 29.2 | 3-Buten-2-one | CH3C(O)CHCH2 (g, trans) | | -95.61 | -111.85 | ± 0.88 | kJ/mol | 70.0898 ± 0.0032 | 78-94-4*1 | 29.2 | 3-Buten-2-one | CH3C(O)CHCH2 (g) | | -95.61 | -111.15 | ± 0.88 | kJ/mol | 70.0898 ± 0.0032 | 78-94-4*0 | 26.9 | Acetaldehyde | CH3CHO (g) | | -155.14 | -165.61 | ± 0.26 | kJ/mol | 44.0526 ± 0.0017 | 75-07-0*0 | 26.6 | Acetaldehyde cation | [CH3CHO]+ (g) | | 831.85 | 821.88 | ± 0.27 | kJ/mol | 44.0520 ± 0.0017 | 36505-03-0*0 |
|
Most Influential reactions involving CH3C(O)CH3 (cr,l)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.326 | 5166.8 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrG°(313.81 K) = 1.552 ± 0.020 kJ/mol | Taylor 1900, 3rd Law | 0.286 | 5166.12 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrG°(297.65 K) = 3.032 ± 0.020 (×1.067) kJ/mol | Boublik 1972, 3rd Law, est unc | 0.208 | 5166.6 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrG°(298.60 K) = 2.973 ± 0.025 kJ/mol | Taylor 1900, 3rd Law | 0.044 | 5167.2 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(317.90 K) = 7.256 ± 0.013 kcal/mol | Pennington 1957, note unc | 0.041 | 5167.1 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(300.42 K) = 7.458 ± 0.008 (×1.682) kcal/mol | Pennington 1957, note unc | 0.034 | 5166.10 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrG°(226.61 K) = 10.362 ± 0.041 (×1.509) kJ/mol | Drucker 1915, 3rd Law | 0.023 | 5167.3 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(329.28 K) = 7.107 ± 0.018 kcal/mol | Pennington 1957, note unc | 0.014 | 5167.4 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(337.94 K) = 7.011 ± 0.023 kcal/mol | Pennington 1957, note unc | 0.009 | 5167.5 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(345.03 K) = 6.921 ± 0.028 kcal/mol | Pennington 1957, note unc | 0.005 | 5166.2 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(298.15 K) = 31.27 ± 0.16 kJ/mol | Majer 1985 | 0.002 | 5239.1 | CH3C(O)CH3 (cr,l) + H2 (g) → CH3CH(OH)CH3 (cr,l)  | ΔrH°(298.15 K) = -16.43 ± 0.24 (×2.044) kcal/mol | Wiberg 1991 | 0.001 | 5166.13 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(293.15 K) = 31.89 ± 0.13 (×2) kJ/mol | Belousov 1964, ThermoData 2004 | 0.001 | 5168.2 | CH3C(O)CH3 (cr,l) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(293 K) = -429.9 ± 2.1 kcal/mol | Emery 1911, est unc | 0.001 | 5167.6 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(329.65 K) = 7.096 ± 0.072 kcal/mol | Collins 1949 | 0.000 | 5166.11 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(297.65 K) = 31.34 ± 0.38 kJ/mol | Boublik 1972, 2nd Law, est unc | 0.000 | 5166.7 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(313.81 K) = 30.73 ± 0.41 kJ/mol | Taylor 1900, 2nd Law | 0.000 | 5166.4 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(298.15 K) = 31.3 ± 0.5 kJ/mol | Ambrose 1975, est unc | 0.000 | 5168.3 | CH3C(O)CH3 (cr,l) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -427 ± 4 kcal/mol | Delepine 1900, Miles 1941, Kharasch 1929, est unc | 0.000 | 5167.7 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(329.15 K) = 7.245 ± 0.019 (×6.727) kcal/mol | Mathews 1926, note unc3 | 0.000 | 5168.1 | CH3C(O)CH3 (cr,l) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -423.4 ± 4 (×1.091) kcal/mol | Guinchant 1918, as quoted by NIST WebBook, est unc |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov |
4
|
|
L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017)
[DOI: 10.1021/acs.jctc.6b00970]
|
5
|
|
J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017)
[DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|