Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Nitric acid | HNO3 (g) | | -124.49 | -134.20 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*0 |
|
Representative Geometry of HNO3 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HNO3 (g)The 20 contributors listed below account only for 89.1% of the provenance of ΔfH° of HNO3 (g). A total of 23 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 29.0 | 1408.3 | (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l)  | ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/mol | Becker 1934 | 25.1 | 1636.1 | 2 ONO (g) + 1/2 O2 (g) + H2O (g) → 2 HNO3 (g)  | ΔrG°(371 K) = -6.04 ± 0.63 kJ/mol | Jones 1943, 3rd Law | 9.9 | 1635.1 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrH°(293.1 K) = -8.95 ± 0.24 kcal/mol | Forsythe 1942, Chambers 1937, Wilson 1940, apud Gurvich TPIS | 6.3 | 1635.4 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrG°(298.15 K) = 10.33 ± 1.08 (×1.164) kJ/mol | Chambers 1937, 3rd Law | 3.3 | 1660.1 | HNO3 (cr,l) → HNO3 (g)  | ΔrH°(293.15 K) = 9.426 ± 0.030 kcal/mol | Wilson 1940, est unc | 2.2 | 1635.3 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrH°(298.15 K) = -9.124 ± 0.5 kcal/mol | Forsythe 1942, Chambers 1937, est unc | 2.2 | 1635.2 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrH°(298.15 K) = -9.184 ± 0.5 kcal/mol | Forsythe 1942, est unc | 1.6 | 1665.1 | 2 NO (g) + 3/2 O2 (g) + H2O (cr,l) → 2 HNO3 (aq)  | ΔrH°(298.15 K) = -74.05 ± 0.5 kcal/mol | Forsythe 1942, est unc | 1.2 | 1189.1 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Callear 1970 | 1.2 | 1189.2 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Dingle 1975 | 1.1 | 1660.4 | HNO3 (cr,l) → HNO3 (g)  | ΔrH°(298.15 K) = 9.331 ± 0.05 kcal/mol | NBS Tables 1989, est unc | 0.9 | 1189.4 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52408 ± 10 (×1.114) cm-1 | Kley 1973, Miescher 1974, est unc | 0.9 | 118.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 0.6 | 1642.1 | [NO3]- (g) → NO3 (g)  | ΔrH°(0 K) = 3.937 ± 0.014 eV | Weaver 1991 | 0.6 | 1328.6 | O2NONO2 (g) + H2O (g) → 2 HNO3 (g)  | ΔrH°(0 K) = -8.68 ± 0.9 kcal/mol | Ruscic W1RO | 0.6 | 1635.6 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrG°(298.15 K) = 7.6 ± 1.2 (×3.364) kJ/mol | Abel 1930, 3rd Law, note unc5 | 0.5 | 1328.3 | O2NONO2 (g) + H2O (g) → 2 HNO3 (g)  | ΔrH°(0 K) = -7.50 ± 1.0 kcal/mol | Ruscic G4 | 0.4 | 1403.1 | NH3 (g) → NH3 (aq, undissoc)  | ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/mol | Vanderzee 1972 | 0.3 | 1328.5 | O2NONO2 (g) + H2O (g) → 2 HNO3 (g)  | ΔrH°(0 K) = -7.96 ± 1.3 kcal/mol | Ruscic CBS-n | 0.3 | 1415.2 | (NH4)NO3 (cr,l) → [NH4]+ (aq) + [NO3]- (aq)  | ΔrH°(298.15 K) = 25.544 ± 0.030 kJ/mol | Vanderzee 1980, Vanderzee 1980a, as quoted by CODATA Key Vals |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HNO3 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 85.3 | Nitric acid | HNO3 (cr,l) | | -179.01 | -173.29 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*500 | 84.4 | Nitric acid | HNO3 (aq) | | | -206.63 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*800 | 84.4 | Nitrate | [NO3]- (aq) | | | -206.63 | ± 0.18 | kJ/mol | 62.00549 ± 0.00090 | 14797-55-8*800 | 84.3 | Nitric acid | HNO3 (aq, 3 H2O) | | | -197.76 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*805 | 84.0 | Nitric acid | HNO3 (aq, 1000 H2O) | | | -206.31 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*839 | 84.0 | Nitric acid | HNO3 (aq, 1 H2O) | | | -186.85 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*801 | 83.4 | Nitric acid monohydrate | HNO3(H2O) (cr,l) | | -479.18 | -472.68 | ± 0.19 | kJ/mol | 81.0282 ± 0.0012 | 13444-82-1*500 | 79.6 | Ammonium nitrate | (NH4)NO3 (cr,l) | | -350.29 | -365.25 | ± 0.18 | kJ/mol | 80.04344 ± 0.00095 | 6484-52-2*500 | 78.7 | Nitric acid trihydrate | HNO3(H2O)3 (cr,l) | | -1062.12 | -1055.27 | ± 0.21 | kJ/mol | 117.0587 ± 0.0019 | 13444-83-2*500 | -26.7 | Methyl nitrite | CH3ONO (g, cis-trans equilib) | | -55.58 | -66.25 | ± 0.45 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*0 |
|
Most Influential reactions involving HNO3 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.815 | 4723.2 | CH3OH (g) + 2 ONO (g) → HNO3 (g) + CH3ONO (g, cis-trans equilib)  | ΔrG°(393.95 K) = -0.865 ± 0.105 kcal/mol | Silverwood 1967, 3rd Law | 0.584 | 1660.1 | HNO3 (cr,l) → HNO3 (g)  | ΔrH°(293.15 K) = 9.426 ± 0.030 kcal/mol | Wilson 1940, est unc | 0.479 | 1629.1 | HNO3 (g) → [HNO3]+ (g)  | ΔrH°(0 K) = 11.95 ± 0.01 eV | Lloyd 1975, Ames 1976 | 0.479 | 1629.2 | HNO3 (g) → [HNO3]+ (g)  | ΔrH°(0 K) = 11.96 ± 0.01 eV | Frost 1975 | 0.455 | 1648.2 | [NO3]- (g) + HBr (g) → Br- (g) + HNO3 (g)  | ΔrH°(391 K) = -1.03 ± 0.21 kcal/mol | Davidson 1977, 2nd Law | 0.292 | 1636.1 | 2 ONO (g) + 1/2 O2 (g) + H2O (g) → 2 HNO3 (g)  | ΔrG°(371 K) = -6.04 ± 0.63 kJ/mol | Jones 1943, 3rd Law | 0.210 | 1660.4 | HNO3 (cr,l) → HNO3 (g)  | ΔrH°(298.15 K) = 9.331 ± 0.05 kcal/mol | NBS Tables 1989, est unc | 0.167 | 1648.1 | [NO3]- (g) + HBr (g) → Br- (g) + HNO3 (g)  | ΔrH°(0 K) = -0.045 ± 0.015 eV | Ferguson 1972b | 0.155 | 1630.2 | [HNO3]- (g) → HNO3 (g)  | ΔrH°(0 K) = 0.707 ± 0.082 eV | Ruscic G3B3 | 0.144 | 1630.3 | [HNO3]- (g) → HNO3 (g)  | ΔrH°(0 K) = 0.678 ± 0.085 eV | Ruscic G3 | 0.144 | 1630.4 | [HNO3]- (g) → HNO3 (g)  | ΔrH°(0 K) = 0.684 ± 0.085 eV | Ruscic G3X | 0.123 | 1630.5 | [HNO3]- (g) → HNO3 (g)  | ΔrH°(0 K) = 0.679 ± 0.092 eV | Ruscic CBS-n | 0.116 | 1689.5 | HOON(O)O (g) + H2O (g) → HNO3 (g) + H2O2 (g)  | ΔrH°(0 K) = 6.31 ± 0.9 kcal/mol | Ruscic W1RO | 0.115 | 1635.1 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrH°(293.1 K) = -8.95 ± 0.24 kcal/mol | Forsythe 1942, Chambers 1937, Wilson 1940, apud Gurvich TPIS | 0.094 | 1689.4 | HOON(O)O (g) + H2O (g) → HNO3 (g) + H2O2 (g)  | ΔrH°(0 K) = 7.19 ± 1.0 kcal/mol | Ruscic CBS-n | 0.094 | 1689.2 | HOON(O)O (g) + H2O (g) → HNO3 (g) + H2O2 (g)  | ΔrH°(0 K) = 6.79 ± 1.0 kcal/mol | Ruscic G4 | 0.090 | 1648.3 | [NO3]- (g) + HBr (g) → Br- (g) + HNO3 (g)  | ΔrG°(391 K) = 0.76 ± 0.45 (×1.044) kcal/mol | Davidson 1977, 3rd Law | 0.078 | 1689.1 | HOON(O)O (g) + H2O (g) → HNO3 (g) + H2O2 (g)  | ΔrH°(0 K) = 7.12 ± 1.1 kcal/mol | Ruscic G3X | 0.073 | 1635.4 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrG°(298.15 K) = 10.33 ± 1.08 (×1.164) kJ/mol | Chambers 1937, 3rd Law | 0.063 | 4723.1 | CH3OH (g) + 2 ONO (g) → HNO3 (g) + CH3ONO (g, cis-trans equilib)  | ΔrH°(393.95 K) = -15.808 ± 0.376 kcal/mol | Silverwood 1967, 2nd Law |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015)
[DOI: 10.1021/acs.jpca.5b08406]
|
6
|
|
L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017)
[DOI: 10.1021/acs.jctc.6b00970]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|