Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
NitroxylNO3 (g)O=[N+]([O-])[O]79.3874.13± 0.19kJ/mol62.00494 ±
0.00090
12033-49-7*0

Representative Geometry of NO3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of NO3 (g)

The 4 contributors listed below account for 90.9% of the provenance of ΔfH° of NO3 (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
83.71646.2 NO3 (g) → O (g) ONO (g) ΔrH°(0 K) = 17079 ± 15 cm-1Johnston 1996, Davis 1993
2.51189.2 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Dingle 1975
2.51189.1 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Callear 1970
2.01189.4 NO (g) → N (g) O (g) ΔrH°(0 K) = 52408 ± 10 (×1.114) cm-1Kley 1973, Miescher 1974, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of NO3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
56.7 Dinitrogen pentoxideO2NONO2 (g)O=[N+]([O-])O[N+](=O)[O-]24.4114.84± 0.35kJ/mol108.0105 ±
0.0015
10102-03-1*0
46.7 Dinitrogen pentoxideO2NONO2 (cr,l)O=[N+]([O-])O[N+](=O)[O-]-41.06± 0.42kJ/mol108.0105 ±
0.0015
10102-03-1*500
34.1 Nitrogen dioxideONO (g)O=[N]=O36.85534.048± 0.065kJ/mol46.00554 ±
0.00060
10102-44-0*0
34.0 Nitric oxideNO (g)[N]=O90.61691.120± 0.065kJ/mol30.00614 ±
0.00031
10102-43-9*0
34.0 Nitrosyl ion[NO]+ (g)N#[O+]984.484984.479± 0.065kJ/mol30.00559 ±
0.00031
14452-93-8*0
33.2 Dinitrogen tetraoxideO2NNO2 (g)O=N(=O)N(=O)=O20.1410.85± 0.14kJ/mol92.0111 ±
0.0012
10544-72-6*0
32.9 Nitrosyl chlorideClNO (g)ClN=O54.45052.548± 0.067kJ/mol65.45884 ±
0.00095
2696-92-6*0
32.1 Dinitrogen dioxideONNO (g, cis)O=NN=O172.88171.12± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*2
32.1 Dinitrogen dioxideONNO (g)O=NN=O172.88171.12± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*0
30.6 Nitrogen sesquioxideONNO2 (g)O=N-[N](=O)[O]90.7186.15± 0.15kJ/mol76.01168 ±
0.00091
10544-73-7*0

Most Influential reactions involving NO3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9511646.2 NO3 (g) → O (g) ONO (g) ΔrH°(0 K) = 17079 ± 15 cm-1Johnston 1996, Davis 1993
0.7431641.3 NO3 (g) → [NO3]+ (g) ΔrH°(0 K) = 12.55 ± 0.01 eVWang 1997, Monks 1998, Wang 1998
0.2111642.1 [NO3]- (g) → NO3 (g) ΔrH°(0 K) = 3.937 ± 0.014 eVWeaver 1991
0.1851641.2 NO3 (g) → [NO3]+ (g) ΔrH°(0 K) = 12.565 ± 0.02 eVMonks 1994, Monks 1998, Wang 1998
0.1531326.6 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(294.8 K) = 12.23 ± 0.17 kcal/molMatsumoto 2006, 3rd Law
0.1101326.9 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(293 K) = 12.49 ± 0.20 kcal/molMatsumoto 2006, 3rd Law
0.1101326.8 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(295 K) = 12.25 ± 0.20 kcal/molMatsumoto 2006, 3rd Law
0.0751320.3 ON(O2)NO (g, perp) → NO3 (g) NO (g) ΔrH°(0 K) = 24.08 ± 1.50 kcal/molRuscic W1RO
0.0701326.10 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(295 K) = 12.19 ± 0.25 kcal/molMatsumoto 2006, 3rd Law
0.0661320.2 ON(O2)NO (g, perp) → NO3 (g) NO (g) ΔrH°(0 K) = 23.30 ± 1.60 kcal/molRuscic G4
0.0571320.1 ON(O2)NO (g, perp) → NO3 (g) NO (g) ΔrH°(0 K) = 25.11 ± 1.72 kcal/molRuscic G3X
0.0521325.7 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(295 K) = 12.02 ± 0.29 kcal/molBurrows 1985, 3rd Law, note unc5
0.0491326.1 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(300 K) = 12.0 ± 0.3 kcal/molPerner 1985, note unc5
0.0491326.4 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(298.15 K) = 12.17 ± 0.30 kcal/molTuazon 1984, note unc5
0.0491326.2 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(298.15 K) = 12.3 ± 0.3 kcal/molSmith 1985, Viggiano 1981, note unc5
0.0491325.5 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(297 K) = 12.17 ± 0.30 kcal/molKircher 1984, 3rd Law, note unc5
0.0491326.3 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(298.15 K) = 11.9 ± 0.3 kcal/molSmith 1985, Connell 1979, note unc5
0.0461642.2 [NO3]- (g) → NO3 (g) ΔrH°(0 K) = 3.92 ± 0.03 eVWang 2002
0.0461325.3 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(313.5 K) = 11.37 ± 0.31 kcal/molGraham 1978, Graham 1978a, 3rd Law, note unc5
0.0431325.9 O2NONO2 (g) → ONO (g) NO3 (g) ΔrG°(320 K) = 11.59 ± 0.32 kcal/molCantrell 1988, 3rd Law, note unc5


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.