Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Azanide[NH2]- (g)[NH2-]114.89112.02± 0.33kJ/mol16.02317 ±
0.00016
17655-31-1*0

Representative Geometry of [NH2]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [NH2]- (g)

The 20 contributors listed below account only for 83.7% of the provenance of ΔfH° of [NH2]- (g).
A total of 43 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
39.51365.1 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.771 ± 0.005 eVWickham-Jones 1989
9.81365.4 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.768 ± 0.010 eVRadisic 2002
8.21372.4 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(296 K) = -1.916 ± 0.272 kcal/molBohme 1973, MacKay 1976, note unc2
3.81372.2 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(297 K) = -1.945 ± 0.400 kcal/molBohme 1973, note unc2
3.44454.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 eVGunion 1992
3.32133.1 CH3NH2 (g) [NH2]- (g) → [CH3NH]- (g) NH3 (g) ΔrG°(296 K) = -0.51 ± 0.20 kcal/molMacKay 1976, note unc2
2.02134.1 [CH3NH]- (g) H2 (g) → H- (g) CH3NH2 (g) ΔrG°(296 K) = -1.46 ± 0.29 kcal/molMacKay 1976, note unc2
2.01366.10 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.770 ± 0.022 eVBoese 2004
1.71365.2 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.744 ± 0.022 (×1.067) eVSmyth 1972
1.31374.1 NH3 (g) → [NH2]+ (g) H (g) ΔrH°(0 K) = 15.765 ± 0.002 eVSong 2001a, note unc2
1.04464.9 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrG°(710 K) = -26.4 ± 2 kJ/molHeckmann 1996, Zhang 1989, 3rd Law, est unc
1.02128.1 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.432 ± 0.015 eVRadisic 2002
0.92016.1 [CH2CH]- (g) → CH2CH (g) ΔrH°(0 K) = 0.667 ± 0.024 eVErvin 1990
0.81366.9 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.769 ± 0.035 eVParthiban 2001
0.74470.1 C6H6 (g) [OH]- (g) → [C6H5]- (g) H2O (g) ΔrH°(600 K) = 9.9 ± 0.6 (×1.414) kcal/molMeot-Ner 1986, Meot-Ner 1988, note std dev
0.72029.1 [CH2CH]- (g) NH3 (g) → [NH2]- (g) CH2CH2 (g) ΔrG°(298.15 K) = -4.54 ± 0.24 kcal/molErvin 1990
0.71371.1 NH3 (g) → [NH2]- (g) H+ (g) ΔrH°(0 K) = 402.47 ± 0.90 kcal/molRuscic W1RO, Ruscic W1U
0.71365.3 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.779 ± 0.037 eVCelotta 1974
0.64460.13 C6H6 (g) → C6H5 (g) H (g) ΔrH°(0 K) = 111.02 ± 0.60 kcal/molKarton 2009a
0.54452.10 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1195.15 ± 0.60 kcal/molKarton 2009a

Top 10 species with enthalpies of formation correlated to the ΔfH° of [NH2]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
74.1 Phenide[C6H5]- (g)c1cccc[c-]1244.44231.01± 0.42kJ/mol77.1044 ±
0.0048
30922-78-2*0
36.2 PhenylC6H5 (g)c1cccc[c]1350.19336.83± 0.56kJ/mol77.1039 ±
0.0048
2396-01-2*0
27.6 Vinyl anion[CH2CH]- (g)C=[CH-]237.01232.59± 0.87kJ/mol27.0458 ±
0.0016
25012-81-1*0
25.3 Methylamidogen anion[CH3NH]- (g)C[NH-]144.95134.12± 0.68kJ/mol30.04975 ±
0.00085
54448-39-4*0
22.4 AmidogenNH2 (g)[NH2]188.91186.02± 0.12kJ/mol16.02262 ±
0.00016
13770-40-6*0
22.3 Azanylium[NH2]+ (g)[NH2+]1266.551264.48± 0.12kJ/mol16.02207 ±
0.00016
15194-15-7*0
9.6 Phenylium[C6H5]+ (g)c1cccc[c+]11148.451135.67± 0.88kJ/mol77.1034 ±
0.0048
17333-73-2*0
9.6 Phenylium[C6H5]+ (g, singlet)c1cccc[c+]11148.451135.67± 0.88kJ/mol77.1034 ±
0.0048
17333-73-2*2
9.0 NitrosobenzeneC6H5NO (g)c1ccc(cc1)N=O215.7198.7± 1.2kJ/mol107.1100 ±
0.0048
586-96-9*0
8.7 IodobenzeneC6H5I (g)c1ccc(cc1)I177.7161.7± 1.0kJ/mol204.0084 ±
0.0048
591-50-4*0

Most Influential reactions involving [NH2]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7124469.1 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.047 kcal/molDavico 1995
0.6812029.1 [CH2CH]- (g) NH3 (g) → [NH2]- (g) CH2CH2 (g) ΔrG°(298.15 K) = -4.54 ± 0.24 kcal/molErvin 1990
0.5292133.1 CH3NH2 (g) [NH2]- (g) → [CH3NH]- (g) NH3 (g) ΔrG°(296 K) = -0.51 ± 0.20 kcal/molMacKay 1976, note unc2
0.4451365.1 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.771 ± 0.005 eVWickham-Jones 1989
0.1903544.5 [(CH3)2N]- (g) NH2 (g) → (CH3)2N (g) [NH2]- (g) ΔrH°(0 K) = -0.232 ± 0.025 eVRuscic W1RO
0.1544469.3 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.618 ± 0.101 kcal/molDavico 1995
0.1323544.2 [(CH3)2N]- (g) NH2 (g) → (CH3)2N (g) [NH2]- (g) ΔrH°(0 K) = -0.226 ± 0.030 eVRuscic G4
0.1111365.4 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.768 ± 0.010 eVRadisic 2002
0.1004469.2 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.125 kcal/molDavico 1995
0.0821372.4 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(296 K) = -1.916 ± 0.272 kcal/molBohme 1973, MacKay 1976, note unc2
0.0583544.4 [(CH3)2N]- (g) NH2 (g) → (CH3)2N (g) [NH2]- (g) ΔrH°(0 K) = -0.216 ± 0.045 eVRuscic CBS-n
0.0381372.2 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(297 K) = -1.945 ± 0.400 kcal/molBohme 1973, note unc2
0.0231366.10 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.770 ± 0.022 eVBoese 2004
0.0201365.2 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.744 ± 0.022 (×1.067) eVSmyth 1972
0.0143544.1 [(CH3)2N]- (g) NH2 (g) → (CH3)2N (g) [NH2]- (g) ΔrH°(0 K) = -0.145 ± 0.045 (×2) eVRuscic G3X
0.0143544.3 [(CH3)2N]- (g) NH2 (g) → (CH3)2N (g) [NH2]- (g) ΔrH°(0 K) = -0.143 ± 0.050 (×1.834) eVRuscic CBS-n
0.0091366.9 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.769 ± 0.035 eVParthiban 2001
0.0081365.3 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.779 ± 0.037 eVCelotta 1974
0.0071371.1 NH3 (g) → [NH2]- (g) H+ (g) ΔrH°(0 K) = 402.47 ± 0.90 kcal/molRuscic W1RO, Ruscic W1U
0.0041366.8 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.756 ± 0.050 eVParthiban 2001, Ruscic W1RO


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.