Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Hydron | H+ (g) | | 1528.084 | 1530.047 | ± 0.000 | kJ/mol | 1.007391 ± 0.000070 | 12408-02-5*0 |
|
Representative Geometry of H+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of H+ (g)The 13 contributors listed below account for 90.6% of the provenance of ΔfH° of H+ (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 26.0 | 57.14 | H2 (g) → 2 H (g)  | ΔrH°(0 K) = 36118.0695 ± 0.0020 cm-1 | Piszczatowski 2009, note unc | 21.7 | 63.1 | H2 (g, para) → H2 (g)  | ΔrH°(0 K) = 0.0 ± 0.0 cm-1 | triv | 21.6 | 65.1 | H2 (g, ortho) → [H2]+ (g)  | ΔrH°(0 K) = 124299.00429 ± 0.00071 cm-1 | Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008 | 4.3 | 78.9 | [H2]+ (g) → 2 H+ (g)  | ΔrH°(0 K) = 131058.121975 ± 0.000098 cm-1 | Liu 2009, note unc, Korobov 2006, Korobov 2006a, Korobov 2008 | 2.3 | 64.8 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.48680 ± 0.00022 cm-1 | Piszczatowski 2009, note unc | 2.3 | 64.5 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.487 ± 0.001 cm-1 | Schwartz 1987 | 2.3 | 64.7 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.486837 ± 0.000222 cm-1 | Jennings 1987, note unc | 1.8 | 73.7 | H (g) → H+ (g)  | ΔrH°(0 K) = 109678.7717426 ± 0.0000020 cm-1 | Liu 2009, note unc | 1.8 | 73.8 | H (g) → H+ (g)  | ΔrH°(0 K) = 109678.77174307 ± 0.00000020 cm-1 | Sprecher 2010, note unc | 1.8 | 73.2 | H (g) → H+ (g)  | ΔrH°(0 K) = 109678.771690 ± 0.000006 cm-1 | Erickson 1977, note std dev | 1.8 | 73.6 | H (g) → H+ (g)  | ΔrH°(0 K) = 109678.771671 ± 0.000010 cm-1 | Johnson 1985, note std dev | 1.1 | 61.12 | H2 (g) → [H2]+ (g)  | ΔrH°(0 K) = 124417.488 ± 0.010 cm-1 | Meisners 1994, Jungen 1990, de Lange 2002 | 1.0 | 78.6 | [H2]+ (g) → 2 H+ (g)  | ΔrH°(0 K) = 131058.1237 ± 0.002 cm-1 | Taylor 1999a, Moss 1993b, Howells 1990, est unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of H+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 88.2 | Dihydrogen cation | [H2]+ (g) | | 1488.364 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*0 | 76.7 | Hydrogen atom | H (g) | | 216.034 | 217.998 | ± 0.000 | kJ/mol | 1.007940 ± 0.000070 | 12385-13-6*0 | 60.1 | Dihydrogen | H2 (g, ortho) | | 1.417 | 0.019 | ± 0.000 | kJ/mol | 2.01588 ± 0.00014 | 1333-74-0*1 | 57.9 | Dihydrogen cation | [H2]+ (g, para) | | 1488.364 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*2 | 50.5 | Dihydrogen | H2 (g, para) | | -0.000 | -0.058 | ± 0.000 | kJ/mol | 2.01588 ± 0.00014 | 1333-74-0*2 | 47.8 | Deuterium hydride cation | [HD]+ (g) | | 1490.498 | 1490.587 | ± 0.000 | kJ/mol | 3.021493 ± 0.000070 | 12181-16-7*0 | 43.2 | Dihydrogen cation | [H2]+ (g, ortho) | | 1489.060 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*1 | 42.5 | Hydride | H- (g) | | 143.264 | 145.228 | ± 0.000 | kJ/mol | 1.008489 ± 0.000070 | 12184-88-2*0 | 41.0 | Deuterium hydride | HD (g) | | 0.328 | 0.319 | ± 0.000 | kJ/mol | 3.022042 ± 0.000070 | 13983-20-5*0 |
|
Most Influential reactions involving H+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.737 | 105.1 | [HD]+ (g) → H+ (g) + D+ (g)  | ΔrH°(0 K) = 131224.68415 ± 0.00012 cm-1 | Korobov 2008, Sprecher 2010, note unc | 0.633 | 2243.1 | HCN (g) → H+ (g) + [CN]- (g)  | ΔrH°(0 K) = 122246 ± 3 cm-1 | Suits 2006, Hu 2005 | 0.559 | 664.1 | HCl (g) → H+ (g) + Cl- (g)  | ΔrH°(0 K) = 116289.0 ± 0.6 cm-1 | Martin 1998, note HCl | 0.536 | 435.4 | HF (g) → H+ (g) + F- (g)  | ΔrH°(0 K) = 129557.1 ± 0.9 cm-1 | Hu 2006a, Hu 2005a | 0.496 | 91.6 | [H3]+ (g) → 3 H+ (g)  | ΔrH°(0 K) = 290399.69 ± 1.5 cm-1 | Cencek 1998, Jaquet 1998, note H3+, Lindsay 2001, Rohse 1993 | 0.496 | 91.7 | [H3]+ (g) → 3 H+ (g)  | ΔrH°(0 K) = 290398.83 ± 1.5 cm-1 | Cencek 1998, Matyus 2007, Lindsay 2001, Rohse 1993 | 0.444 | 1354.8 | [NH4]+ (g) → NH3 (g) + H+ (g)  | ΔrH°(0 K) = 846.40 ± 0.3 kJ/mol | Czako 2008 | 0.434 | 435.3 | HF (g) → H+ (g) + F- (g)  | ΔrH°(0 K) = 129557.7 ± 1 cm-1 | Martin 2000, Hu 2006a | 0.378 | 78.9 | [H2]+ (g) → 2 H+ (g)  | ΔrH°(0 K) = 131058.121975 ± 0.000098 cm-1 | Liu 2009, note unc, Korobov 2006, Korobov 2006a, Korobov 2008 | 0.356 | 2242.3 | HCN (g) → H+ (g) + [CN]- (g)  | ΔrH°(0 K) = 122244 ± 4 cm-1 | Hu 2006 | 0.348 | 930.5 | HOCl(O)(O)O (g) → [OCl(O)(O)O]- (g) + H+ (g)  | ΔrH°(0 K) = 299.44 ± 0.90 kcal/mol | Ruscic W1RO | 0.287 | 731.4 | [ClFH]+ (g) → ClF (g) + H+ (g)  | ΔrH°(0 K) = 112.97 ± 0.90 kcal/mol | Ruscic W1RO | 0.282 | 728.4 | [FClH]+ (g) → ClF (g) + H+ (g)  | ΔrH°(0 K) = 119.17 ± 0.90 kcal/mol | Ruscic W1RO | 0.267 | 3733.5 | CH2Cl2 (g) → [CHCl2]- (g) + H+ (g)  | ΔrH°(0 K) = 376.27 ± 0.90 kcal/mol | Ruscic W1RO | 0.262 | 3698.5 | CHCl3 (g) → [CCl3]- (g) + H+ (g)  | ΔrH°(0 K) = 358.67 ± 0.90 kcal/mol | Ruscic W1RO | 0.257 | 3745.6 | CH3Cl (g) → [CH2Cl]- (g) + H+ (g)  | ΔrH°(0 K) = 396.34 ± 0.90 kcal/mol | Ruscic W1RO | 0.248 | 664.2 | HCl (g) → H+ (g) + Cl- (g)  | ΔrH°(0 K) = 116287.7 ± 0.9 cm-1 | Hu 2003, note HCl | 0.247 | 488.4 | [(HF)(H)]+ (g, triplet) → HF (g) + H+ (g)  | ΔrH°(0 K) = -56.71 ± 0.90 kcal/mol | Ruscic W1RO | 0.238 | 2468.11 | [HCO]+ (g) → H+ (g) + CO (g)  | ΔrH°(0 K) = 586.51 ± 0.2 kJ/mol | Czako 2008 | 0.233 | 104.1 | [HD]+ (g) → H+ (g) + D (g)  | ΔrH°(0 K) = 21516.0696 ± 0.002 cm-1 | Moss 1993, Moss 1993a, Leach 1995, est unc |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015)
[DOI: 10.1021/acs.jpca.5b08406]
|
6
|
|
L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017)
[DOI: 10.1021/acs.jctc.6b00970]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|