Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
AcetylCH3CO (g)C[C]=O-3.37-10.03± 0.36kJ/mol43.0446 ±
0.0016
3170-69-2*0

Representative Geometry of CH3CO (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3CO (g)

The 20 contributors listed below account only for 61.8% of the provenance of ΔfH° of CH3CO (g).
A total of 153 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
27.53117.4 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/molKovacs 2005, Atkinson 1999, 3rd Law
10.33055.1 CH3CHO (g) H2 (g) → CH3CH2OH (g) ΔrH°(355.15 K) = -16.752 ± 0.100 kcal/molDolliver 1938, note unc
3.64743.1 (CH3CO)2 (cr,l) → (CH3CO)2 (g) ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/molNicholson 1954
1.83048.11 CH3CHO (g) → 2 C (g) O (g) + 4 H (g) ΔrH°(0 K) = 642.58 ± 0.30 kcal/molKarton 2011
1.73478.7 CH3C(O)Cl (g) → CH3CO (g) Cl (g) ΔrH°(0 K) = 83.42 ± 0.6 kcal/molTang 2008, est unc
1.72958.2 CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(303.15 K) = -1367.06 ± 0.26 kJ/molChao 1965, mw conversion
1.44744.1 (CH3CO)2 (g) → CH3CO (g) [CH3CO]+ (g) ΔrH°(0 K) = 10.090 ± 0.006 eVFogleman 2004
1.4992.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 (×1.682) cm-1Haugh 1971, Norling 1935
1.33116.2 CH3CO (g) → CH3 (g) CO (g) ΔrG°(298.15 K) = 8.8 ± 3.0 kJ/molWatkins 1974, 3rd Law
1.33116.1 CH3CO (g) → CH3 (g) CO (g) ΔrH°(320 K) = 47.0 ± 3.0 kJ/molWatkins 1974, 2nd Law
1.23199.9 O(CH2CH2) (g) → CH3CHO (g) ΔrH°(0 K) = -27.56 ± 0.25 kcal/molKarton 2011
1.03103.9 CH3CO (g) → 2 C (g) + 3 H (g) O (g) ΔrH°(0 K) = 554.56 ± 0.8 kcal/molFeller 2008
1.03061.1 CH3CHO (g) OH (g) → CH2CH2 (g) HO2 (g) ΔrH°(0 K) = 46.36 ± 0.4 kcal/molWilke 2008, est unc
0.93203.2 O(CH2CH2) (g) + 5/2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -312.15 ± 0.14 kcal/molPell 1965, as quoted by Cox 1970
0.93104.8 CH3CO (g) → [CH3CO]+ (g) ΔrH°(0 K) = 6.966 ± 0.040 eVRuscic W1RO
0.83117.2 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(343 K) = 1.5 ± 1.4 kJ/molNiiranen 1992, Nicovich 1990, 3rd Law, est unc
0.83199.10 O(CH2CH2) (g) → CH3CHO (g) ΔrH°(0 K) = -27.37 ± 0.3 kcal/molWilke 2008, est unc
0.84679.8 CH3C(O)CH3 (g) CH2O (g) → 2 CH3CHO (g) ΔrH°(0 K) = -0.96 ± 0.85 kcal/molRuscic W1RO
0.74742.1 (CH3CO)2 (cr,l) + 9/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -493.82 ± 0.19 kcal/molNicholson 1954, mw conversion
0.74679.4 CH3C(O)CH3 (g) CH2O (g) → 2 CH3CHO (g) ΔrH°(0 K) = -0.77 ± 0.90 kcal/molRuscic G4

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CO (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
66.4 AcetaldehydeCH3CHO (g)CC=O-154.96-165.44± 0.28kJ/mol44.0526 ±
0.0017
75-07-0*0
65.6 Acetaldehyde cation[CH3CHO]+ (g)CC=[O+]832.03822.05± 0.28kJ/mol44.0520 ±
0.0017
36505-03-0*0
55.9 AcetaldehydeCH3CHO (cr,l)CC=O-186.94-191.66± 0.33kJ/mol44.0526 ±
0.0017
75-07-0*500
40.5 2,3-Butanedione(CH3CO)2 (g)CC(=O)C(=O)C-310.19-326.75± 0.70kJ/mol86.0892 ±
0.0033
431-03-8*0
-29.2 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.47± 0.16kJ/mol80.9119 ±
0.0010
10035-10-6*842
-29.2 Hydrogen bromideHBr (aq)Br-120.71± 0.16kJ/mol80.9119 ±
0.0010
10035-10-6*800
-29.2 Hydrogen bromideHBr (aq, 2000 H2O)Br-120.42± 0.16kJ/mol80.9119 ±
0.0010
10035-10-6*841
-29.2 Hydrogen bromideHBr (aq, 2570 H2O)Br-120.46± 0.16kJ/mol80.9119 ±
0.0010
10035-10-6*952
-30.7 Bromoniumyl[HBr]+ (g)[BrH+]1097.951090.10± 0.16kJ/mol80.9114 ±
0.0010
12258-64-9*0
-30.7 Hydrogen bromideHBr (g)Br-27.72-35.57± 0.16kJ/mol80.9119 ±
0.0010
10035-10-6*0

Most Influential reactions involving CH3CO (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8873117.4 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/molKovacs 2005, Atkinson 1999, 3rd Law
0.8354744.1 (CH3CO)2 (g) → CH3CO (g) [CH3CO]+ (g) ΔrH°(0 K) = 10.090 ± 0.006 eVFogleman 2004
0.1403105.1 [CH3CO]- (g) → CH3CO (g) ΔrH°(0 K) = 0.423 ± 0.037 eVNimlos 1989
0.0763105.9 [CH3CO]- (g) → CH3CO (g) ΔrH°(0 K) = 0.397 ± 0.050 eVRuscic W1RO
0.0713109.4 CH3CO (g) → CH2(CHO) (g) ΔrH°(0 K) = 42.42 ± 1.2 kcal/molRuscic W1RO
0.0613109.2 CH3CO (g) → CH2(CHO) (g) ΔrH°(0 K) = 42.19 ± 1.3 kcal/molRuscic G4
0.0613109.3 CH3CO (g) → CH2(CHO) (g) ΔrH°(0 K) = 42.64 ± 1.3 kcal/molRuscic CBS-n
0.0523109.1 CH3CO (g) → CH2(CHO) (g) ΔrH°(0 K) = 42.62 ± 1.4 kcal/molRuscic G3X
0.0513105.5 [CH3CO]- (g) → CH3CO (g) ΔrH°(0 K) = 0.416 ± 0.061 eVRuscic G4
0.0353478.7 CH3C(O)Cl (g) → CH3CO (g) Cl (g) ΔrH°(0 K) = 83.42 ± 0.6 kcal/molTang 2008, est unc
0.0283117.2 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(343 K) = 1.5 ± 1.4 kJ/molNiiranen 1992, Nicovich 1990, 3rd Law, est unc
0.0263105.4 [CH3CO]- (g) → CH3CO (g) ΔrH°(0 K) = 0.413 ± 0.085 eVRuscic G3X
0.0263108.4 CH3CO (g) → CH2CHO (g) ΔrH°(0 K) = 6.61 ± 1.2 kcal/molRuscic W1RO
0.0233104.8 CH3CO (g) → [CH3CO]+ (g) ΔrH°(0 K) = 6.966 ± 0.040 eVRuscic W1RO
0.0233105.8 [CH3CO]- (g) → CH3CO (g) ΔrH°(0 K) = 0.391 ± 0.090 eVRuscic CBS-n
0.0223105.7 [CH3CO]- (g) → CH3CO (g) ΔrH°(0 K) = 0.422 ± 0.092 eVRuscic CBS-n
0.0223108.3 CH3CO (g) → CH2CHO (g) ΔrH°(0 K) = 6.63 ± 1.3 kcal/molRuscic CBS-n
0.0223108.2 CH3CO (g) → CH2CHO (g) ΔrH°(0 K) = 6.43 ± 1.3 kcal/molRuscic G4
0.0193108.1 CH3CO (g) → CH2CHO (g) ΔrH°(0 K) = 6.05 ± 1.4 kcal/molRuscic G3X
0.0143116.2 CH3CO (g) → CH3 (g) CO (g) ΔrG°(298.15 K) = 8.8 ± 3.0 kJ/molWatkins 1974, 3rd Law


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.