Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Acetyl chlorideCH3C(O)Cl (g)CC(=O)Cl-232.68-241.55± 0.33kJ/mol78.4973 ±
0.0019
75-36-5*0

Representative Geometry of CH3C(O)Cl (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3C(O)Cl (g)

The 16 contributors listed below account for 90.6% of the provenance of ΔfH° of CH3C(O)Cl (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
36.83483.1 CH3C(O)Cl (l) H2O (cr,l) → CH3C(O)OH (aq, 75 H2O) HCl (aq, 75 H2O) ΔrH°(298.15 K) = -22.07 ± 0.07 kcal/molCarson 1949
11.43464.2 CH3C(O)OH (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -209.125 ± 0.054 kcal/molLebedeva 1964
10.33484.2 CH3C(O)Cl (l) H2O (cr,l) → CH3C(O)OH (aq, 1500 H2O) HCl (aq, 1500 H2O) ΔrH°(298.15 K) = -22.22 ± 0.10 (×1.325) kcal/molPritchard 1950, Parker 1965, NBS Tables 1989
8.93474.3 CH3C(O)OH (l) → CH3C(O)OH (aq, 700 H2O) ΔrH°(298.15 K) = -0.293 ± 0.05 kcal/molParker 1965, est unc
5.03464.3 CH3C(O)OH (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -875.14 ± 0.34 kJ/molSteele 1997
3.53464.1 CH3C(O)OH (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -874.54 ± 0.30 (×1.354) kJ/molEvans 1959
2.23465.2 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.360 ± 0.100 kcal/molParker 1965, NBS Tables 1989, est unc
1.93482.9 CH3C(O)Cl (l) → CH3C(O)Cl (g) ΔrG°(298.15 K) = 2.416 ± 0.055 kJ/molMcDonald 1959, 3rd Law
1.73479.3 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 9.85 ± 1.1 kcal/molRuscic G3X
1.53484.3 CH3C(O)Cl (l) H2O (cr,l) → CH3C(O)OH (aq, 1500 H2O) HCl (aq, 1500 H2O) ΔrH°(298.15 K) = -22.55 ± 0.34 kcal/molDevore 1969
1.43478.7 CH3C(O)Cl (g) → CH3CO (g) Cl (g) ΔrH°(0 K) = 83.42 ± 0.6 kcal/molTang 2008, est unc
1.43479.2 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 10.13 ± 1.2 kcal/molRuscic G3
1.23479.5 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 10.01 ± 1.3 kcal/molRuscic CBS-n
0.93465.4 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.347 ± 0.150 kcal/molKlibanova 1933, Parker 1965, est unc
0.93465.5 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.326 ± 0.150 kcal/molPickering 1895, Parker 1965, est unc
0.93465.3 CH3C(O)OH (l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.361 ± 0.150 kcal/molPritchard 1950, Parker 1965, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)Cl (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.7 Acetyl chlorideCH3C(O)Cl (l)CC(=O)Cl-272.22± 0.33kJ/mol78.4973 ±
0.0019
75-36-5*500
63.7 Acetic acidCH3C(O)OH (aq, 75 H2O)CC(=O)O-484.73± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*825
63.6 Acetic acidCH3C(O)OH (aq, 700 H2O)CC(=O)O-484.91± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*835
63.6 Acetic acidCH3C(O)OH (aq)CC(=O)O-485.20± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*800
63.6 Acetic acidCH3C(O)OH (aq, 1500 H2O)CC(=O)O-484.93± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*840
63.6 Acetic acidCH3C(O)OH (aq, 1000 H2O)CC(=O)O-484.93± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*839
63.6 Acetic acidCH3C(O)OH (aq, 500 H2O)CC(=O)O-484.91± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*833
63.6 Acetic acidCH3C(O)OH (aq, 10000 H2O)CC(=O)O-484.96± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*850
47.1 Acetic acidCH3C(O)OH (l)CC(=O)O-484.11-483.68± 0.18kJ/mol60.0520 ±
0.0017
64-19-7*500
9.6 AcetaldehydeCH3CHO (g)CC=O-154.96-165.44± 0.28kJ/mol44.0526 ±
0.0017
75-07-0*0

Most Influential reactions involving CH3C(O)Cl (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9233482.9 CH3C(O)Cl (l) → CH3C(O)Cl (g) ΔrG°(298.15 K) = 2.416 ± 0.055 kJ/molMcDonald 1959, 3rd Law
0.0353478.7 CH3C(O)Cl (g) → CH3CO (g) Cl (g) ΔrH°(0 K) = 83.42 ± 0.6 kcal/molTang 2008, est unc
0.0343479.3 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 9.85 ± 1.1 kcal/molRuscic G3X
0.0283479.2 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 10.13 ± 1.2 kcal/molRuscic G3
0.0243479.5 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 10.01 ± 1.3 kcal/molRuscic CBS-n
0.0213482.10 CH3C(O)Cl (l) → CH3C(O)Cl (g) ΔrH°(298.15 K) = 31.02 ± 0.32 (×1.139) kJ/molMcDonald 1959, 2nd Law
0.0173482.3 CH3C(O)Cl (l) → CH3C(O)Cl (g) ΔrG°(298.15 K) = 2.19 ± 0.40 kJ/molNBS Tables 1989
0.0173482.2 CH3C(O)Cl (l) → CH3C(O)Cl (g) ΔrH°(298.15 K) = 30.29 ± 0.40 kJ/molNBS Tables 1989
0.0103480.3 CH3C(O)Cl (g) CH4 (g) → CH3CHO (g) CH3Cl (g) ΔrH°(0 K) = 16.92 ± 1.1 kcal/molRuscic G3X
0.0083480.2 CH3C(O)Cl (g) CH4 (g) → CH3CHO (g) CH3Cl (g) ΔrH°(0 K) = 17.33 ± 1.2 kcal/molRuscic G3
0.0073480.5 CH3C(O)Cl (g) CH4 (g) → CH3CHO (g) CH3Cl (g) ΔrH°(0 K) = 16.55 ± 1.3 kcal/molRuscic CBS-n
0.0073482.7 CH3C(O)Cl (l) → CH3C(O)Cl (g) ΔrG°(298.15 K) = 0.43 ± 0.02 (×7.336) kcal/molDevore 1969, 3rd Law
0.0063482.1 CH3C(O)Cl (l) → CH3C(O)Cl (g) ΔrH°(298.15 K) = 30.03 ± 0.24 (×2.65) kJ/molThermoData 2004
0.0043478.8 CH3C(O)Cl (g) → CH3CO (g) Cl (g) ΔrH°(0 K) = 82.57 ± 1.60 kcal/molWomack 2010
0.0043481.3 CH3C(O)Cl (g) H2 (g) → CH3CHO (g) HCl (g) ΔrH°(0 K) = -2.93 ± 1.4 kcal/molRuscic G3X
0.0043478.3 CH3C(O)Cl (g) → CH3CO (g) Cl (g) ΔrH°(0 K) = 83.10 ± 1.72 kcal/molRuscic G3X
0.0043481.2 CH3C(O)Cl (g) H2 (g) → CH3CHO (g) HCl (g) ΔrH°(0 K) = -2.69 ± 1.5 kcal/molRuscic G3
0.0043482.5 CH3C(O)Cl (l) → CH3C(O)Cl (g) ΔrH°(298.15 K) = 7.13 ± 0.05 (×4) kcal/molMathews 1931, est unc
0.0033478.2 CH3C(O)Cl (g) → CH3CO (g) Cl (g) ΔrH°(0 K) = 83.54 ± 1.84 kcal/molRuscic G3
0.0033481.5 CH3C(O)Cl (g) H2 (g) → CH3CHO (g) HCl (g) ΔrH°(0 K) = -2.32 ± 1.6 kcal/molRuscic CBS-n


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.