Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
EthanolCH3CH2OH (l)CCO-269.34-277.10± 0.21kJ/mol46.0684 ±
0.0017
64-17-5*500

Top contributors to the provenance of ΔfH° of CH3CH2OH (l)

The 20 contributors listed below account only for 74.1% of the provenance of ΔfH° of CH3CH2OH (l).
A total of 167 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
48.22958.2 CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(303.15 K) = -1367.06 ± 0.26 kJ/molChao 1965, mw conversion
7.63055.1 CH3CHO (g) H2 (g) → CH3CH2OH (g) ΔrH°(355.15 K) = -16.752 ± 0.100 kcal/molDolliver 1938, note unc
6.42955.1 CH3CH2OH (g) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(305.65 K) = -1408.03 ± 0.40 (×1.756) kJ/molRossini 1932a, Rossini 1934a, note old units, mw conversion
4.1118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
2.22948.13 CH3CH2OH (g) → 2 C (g) O (g) + 6 H (g) ΔrH°(0 K) = 760.68 ± 0.30 kcal/molKarton 2011
0.62948.12 CH3CH2OH (g) → 2 C (g) O (g) + 6 H (g) ΔrH°(0 K) = 760.75 ± 0.56 kcal/molKarton 2011
0.61852.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.41729.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.33235.6 CH2(OH)2 (g, conrot gauche) CH3CH2CH3 (g) → 2 CH3CH2OH (g) ΔrH°(0 K) = 6.71 ± 1.0 kcal/molRuscic CBS-n
0.33239.6 CH2(OH)2 (g, disrot gauche) CH3CH2CH3 (g) → 2 CH3CH2OH (g) ΔrH°(0 K) = 4.38 ± 1.0 kcal/molRuscic CBS-n
0.31851.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
0.33048.11 CH3CHO (g) → 2 C (g) O (g) + 4 H (g) ΔrH°(0 K) = 642.58 ± 0.30 kcal/molKarton 2011
0.32948.8 CH3CH2OH (g) → 2 C (g) O (g) + 6 H (g) ΔrH°(0 K) = 760.83 ± 0.80 kcal/molMatus 2007
0.33235.3 CH2(OH)2 (g, conrot gauche) CH3CH2CH3 (g) → 2 CH3CH2OH (g) ΔrH°(0 K) = 6.45 ± 1.1 kcal/molRuscic G3X
0.23239.3 CH2(OH)2 (g, disrot gauche) CH3CH2CH3 (g) → 2 CH3CH2OH (g) ΔrH°(0 K) = 3.56 ± 1.1 kcal/molRuscic G3X
0.22969.7 [CH3CHOH]+ (g, anti) → 2 C (g) + 5 H (g) O (g) ΔrH°(0 K) = 511.38 ± 0.80 kcal/molMatus 2007, Matus 2006
0.21775.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
0.23235.2 CH2(OH)2 (g, conrot gauche) CH3CH2CH3 (g) → 2 CH3CH2OH (g) ΔrH°(0 K) = 6.51 ± 1.2 kcal/molRuscic G3
0.2161.1 [OH]- (g) → O- (g) H (g) ΔrH°(0 K) = 4.7796 ± 0.0010 (×1.682) eVMartin 2001, est unc
0.23239.2 CH2(OH)2 (g, disrot gauche) CH3CH2CH3 (g) → 2 CH3CH2OH (g) ΔrH°(0 K) = 4.25 ± 1.2 kcal/molRuscic G3

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2OH (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.6 EthanolCH3CH2OH (g)CCO-216.92-234.64± 0.21kJ/mol46.0684 ±
0.0017
64-17-5*0
50.2 1-Hydroxyethylium[CH3CHOH]+ (g)C[CH+]O609.13594.70± 0.39kJ/mol45.0600 ±
0.0017
18682-96-7*0
50.2 1-Hydroxyethylium[CH3CHOH]+ (g, anti)C[CH+]O609.13594.70± 0.39kJ/mol45.0600 ±
0.0017
18682-96-7*1
33.1 AcetaldehydeCH3CHO (g)CC=O-154.96-165.44± 0.28kJ/mol44.0526 ±
0.0017
75-07-0*0
32.7 Acetaldehyde cation[CH3CHO]+ (g)CC=[O+]832.03822.05± 0.28kJ/mol44.0520 ±
0.0017
36505-03-0*0
32.6 EthoxyCH3CH2O (g)CC[O]1.84-11.59± 0.52kJ/mol45.0605 ±
0.0017
2154-50-9*0
32.6 EthoxyCH3CH2O (g, X 2A")CC[O]1.84-12.07± 0.52kJ/mol45.0605 ±
0.0017
2154-50-9*51
32.5 EthoxyCH3CH2O (g, A 2A')CC[O]6.09-8.35± 0.52kJ/mol45.0605 ±
0.0017
2154-50-9*52
32.3 Ethoxide[CH3CH2O]- (g)CC[O-]-163.35-178.29± 0.53kJ/mol45.0610 ±
0.0017
16331-64-9*0
31.3 WaterH2O (cr,l)O-286.308-285.836± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500

Most Influential reactions involving CH3CH2OH (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5702958.2 CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(303.15 K) = -1367.06 ± 0.26 kJ/molChao 1965, mw conversion
0.2432957.4 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(298.15 K) = 42.43 ± 0.07 kJ/molPolak 1971, note unc
0.2432957.9 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(320.03 K) = 41.36 ± 0.07 kJ/molCounsell 1970, note unc
0.1192957.6 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(298.15 K) = 42.54 ± 0.10 kJ/molFiock 1931, Rossini 1932a, Rossini 1934a, Green 1961
0.1142957.3 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(298.15 K) = 42.523 ± 0.102 kJ/molThermoData 2004
0.0982957.1 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(298.15 K) = 42.46 ± 0.11 kJ/molMajer 1985
0.0752957.7 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(298.15 K) = 10.15 ± 0.03 kcal/molWadso 1966a
0.0272957.8 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(298.15 K) = 10.13 ± 0.05 kcal/molMcCurdy 1963, note unc
0.0272957.11 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(350.57 K) = 9.47 ± 0.05 kcal/molMathews 1926, note unc2
0.0192957.5 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(298.15 K) = 42.28 ± 0.25 kJ/molBernardes 2007
0.0122957.13 CH3CH2OH (l) → CH3CH2OH (g) ΔrG°(298.329 K) = 6.337 ± 0.310 kJ/molThermoData 2004, 3rd Law
0.0072957.2 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(298.15 K) = 42.59 ± 0.40 kJ/molNBS Tables 1989
0.0063063.1 CH3CHO (cr,l) H2 (g) → CH3CH2OH (l) ΔrH°(298.15 K) = -19.44 ± 0.68 (×1.445) kcal/molWiberg 1991
0.0032957.10 CH3CH2OH (l) → CH3CH2OH (g) ΔrH°(351.23 K) = 9.60 ± 0.07 (×2.134) kcal/molBennewitz 1938, ThermoData 2004
0.0022958.3 CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(287 K) = -326.2 ± 1.0 kcal/molBerthelot 1892, Rossini 1932a
0.0012958.5 CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -325.8 ± 1.2 kcal/molAtwater 1903, Rossini 1932a
0.0012958.6 CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(293.15 K) = -327.69 ± 1.28 kcal/molRichards 1920, Parks 1925, Verkade 1927, est unc
0.0002958.7 CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(293.15 K) = -326.5 ± 1.6 kcal/molEmery 1911, Rossini 1932a, est unc
0.0002958.4 CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(293 K) = -325.0 ± 2.0 kcal/molAtwater 1899, Rossini 1932a, note unc2
0.0002958.8 CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(293.15 K) = -328.6 ± 3.3 kcal/molRoth 1927, Rossini 1932a, est unc


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.