Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
MethanolCH3OH (l)CO-235.07-238.41± 0.17kJ/mol32.04186 ±
0.00090
67-56-1*500

Top contributors to the provenance of ΔfH° of CH3OH (l)

The 20 contributors listed below account only for 73.3% of the provenance of ΔfH° of CH3OH (l).
A total of 174 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
47.72082.2 CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -182.72 ± 0.05 kcal/molRossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion
9.82129.1 [CH2OH]+ (g) → H2CO (g) H+ (g) ΔrH°(0 K) = 704.98 ± 0.39 kJ/molCzako 2009
2.3117.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.92088.1 CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(303.15 K) = -725.36 ± 0.13 (×8.175) kJ/molChao 1965, mw conversion
1.52127.1 CH3OH (g) → [CH2OH]+ (g) H (g) ΔrH°(0 K) = 11.6454 ± 0.0017 eVBorkar 2011
1.42076.11 CH3OH (g) → 4 H (g) C (g) O (g) ΔrH°(0 K) = 480.94 ± 0.30 kcal/molKarton 2011
1.02128.1 CH2OH (g) → H2CO (g) H (g) ΔrH°(0 K) = 10160 ± 70 cm-1Ryazanov 2012
0.82128.10 CH2OH (g) → H2CO (g) H (g) ΔrH°(0 K) = 121.88 ± 0.46 (×2.044) kJ/molMarenich 2003b, note unc2
0.72086.6 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.684 ± 0.060 kJ/molSvoboda 1973
0.72086.5 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.677 ± 0.060 kJ/molFiock 1931, Rossini 1932a
0.51642.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.52086.4 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.66 ± 0.07 kJ/molPolak 1971, note unc
0.52076.12 CH3OH (g) → 4 H (g) C (g) O (g) ΔrH°(0 K) = 481.16 ± 0.50 kcal/molMatus 2007
0.52088.6 CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(293.15 K) = -174.03 ± 0.5 kcal/molRoth 1932a, Roth 1931, Rossini 1932a, est unc
0.52088.7 CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(293.15 K) = -174.19 ± 0.5 kcal/molFarbenfabrik 1931, Rossini 1932a, est unc
0.52127.2 CH3OH (g) → [CH2OH]+ (g) H (g) ΔrH°(0 K) = 11.649 ± 0.003 eVRuscic 1993
0.42113.1 CH3OH (g) F- (g) → [CH3O]- (g) HF (g) ΔrH°(0 K) = 0.462 ± 0.003 (×3.292) eVDeTuri 1999, Ervin 2002
0.42115.1 CH3O (g) → CH3 (g) O (g) ΔrH°(0 K) = 87.8 ± 0.3 kcal/molOsborn 1995, Osborn 1997
0.42204.11 [HCO]+ (g) → H+ (g) CO (g) ΔrH°(0 K) = 586.51 ± 0.2 kJ/molCzako 2008
0.42903.6 CH3OCH3 (g) H2O (g) → 2 CH3OH (g) ΔrH°(0 K) = 6.11 ± 1.0 kcal/molRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3OH (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.3 MethanolCH3OH (g)CO-189.82-200.71± 0.16kJ/mol32.04186 ±
0.00090
67-56-1*0
72.5 Hydroxymethylium[CH2OH]+ (g)[CH2+]O717.85709.91± 0.19kJ/mol31.03337 ±
0.00088
18682-95-6*0
47.2 Methanol cation[CH3OH]+ (g)[CH3+]O857.08846.75± 0.33kJ/mol32.04131 ±
0.00090
12538-91-9*0
31.5 HydroxymethylCH2OH (g)[CH2]O-10.26-16.57± 0.33kJ/mol31.03392 ±
0.00088
2597-43-5*0
30.8 Methyl nitriteCH3ONO (g, cis)CON=O-55.46-67.24± 0.46kJ/mol61.0401 ±
0.0010
624-91-9*2
30.8 Methyl nitriteCH3ONO (g, cis-trans equilib)CON=O-55.46-66.13± 0.46kJ/mol61.0401 ±
0.0010
624-91-9*0
27.0 Methoxide[CH3O]- (g)C[O-]-122.54-130.27± 0.35kJ/mol31.03447 ±
0.00088
3315-60-4*0
26.7 MethoxyCH3O (g)C[O]28.9021.53± 0.34kJ/mol31.03392 ±
0.00088
2143-68-2*0
24.8 Methyl nitriteCH3ONO (cr,l)CON=O-88.69± 0.56kJ/mol61.0401 ±
0.0010
624-91-9*500
23.0 WaterH2O (cr,l)O-286.300-285.828± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500

Most Influential reactions involving CH3OH (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2492086.6 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.684 ± 0.060 kJ/molSvoboda 1973
0.2492086.5 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.677 ± 0.060 kJ/molFiock 1931, Rossini 1932a
0.1832086.4 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.66 ± 0.07 kJ/molPolak 1971, note unc
0.1282086.12 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 9.00 ± 0.02 kcal/molGreen 1960, Rossini 1934a


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.