Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Methanol cation[CH3OH]+ (g)[CH3+]O857.08846.75± 0.33kJ/mol32.04131 ±
0.00090
12538-91-9*0

Representative Geometry of [CH3OH]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH3OH]+ (g)

The 20 contributors listed below account only for 87.8% of the provenance of ΔfH° of [CH3OH]+ (g).
A total of 29 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
26.02077.1 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.853 ± 0.005 eVKarlsson 1977
26.02077.2 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.846 ± 0.005 eVMacNeil 1977, note unc3
11.32082.2 CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -182.72 ± 0.05 kcal/molRossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion
6.52077.3 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.85 ± 0.01 eVBerkowitz 1978
2.32129.1 [CH2OH]+ (g) → H2CO (g) H+ (g) ΔrH°(0 K) = 704.98 ± 0.39 kJ/molCzako 2009
1.62077.7 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.85 ± 0.02 eVCocksey 1971
1.62077.8 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.85 ± 0.02 eVWatanabe 1954, Watanabe 1962
1.62077.5 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.84 ± 0.02 eVRefaey 1968
1.62077.6 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.85 ± 0.02 eVBaker 1971, est unc
1.52077.9 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.83 ± 0.02 (×1.022) eVDewar 1969a, est unc
1.52077.10 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.83 ± 0.02 (×1.022) eVAl-Joboury 1964, est unc
1.32077.4 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.829 ± 0.015 (×1.445) eVOmura 1969a
0.92080.8 [CH3OH]+ (g) → 4 H (g) C (g) O (g) ΔrH°(0 K) = 229.94 ± 0.50 (×1.576) kcal/molMatus 2007
0.72077.11 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.83 ± 0.03 eVWarneck 1971
0.5117.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.52112.7 CH3O (g) H+ (g) → [CH3OH]+ (g) ΔrH°(0 K) = -166.78 ± 0.90 kcal/molRuscic W1RO
0.42112.8 CH3O (g) H+ (g) → [CH3OH]+ (g) ΔrH°(298.15 K) = -167.5 ± 0.7 (×1.384) kcal/molMatus 2007, est unc
0.42088.1 CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(303.15 K) = -725.36 ± 0.13 (×8.175) kJ/molChao 1965, mw conversion
0.42078.7 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.886 ± 0.040 eVRuscic W1RO
0.32127.1 CH3OH (g) → [CH2OH]+ (g) H (g) ΔrH°(0 K) = 11.6454 ± 0.0017 eVBorkar 2011

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3OH]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
48.0 MethanolCH3OH (g)CO-189.82-200.71± 0.16kJ/mol32.04186 ±
0.00090
67-56-1*0
47.2 MethanolCH3OH (l)CO-235.07-238.41± 0.17kJ/mol32.04186 ±
0.00090
67-56-1*500
35.4 Hydroxymethylium[CH2OH]+ (g)[CH2+]O717.85709.91± 0.19kJ/mol31.03337 ±
0.00088
18682-95-6*0
15.5 HydroxymethylCH2OH (g)[CH2]O-10.26-16.57± 0.33kJ/mol31.03392 ±
0.00088
2597-43-5*0
15.1 Methyl nitriteCH3ONO (g, cis)CON=O-55.46-67.24± 0.46kJ/mol61.0401 ±
0.0010
624-91-9*2
15.1 Methyl nitriteCH3ONO (g, cis-trans equilib)CON=O-55.46-66.13± 0.46kJ/mol61.0401 ±
0.0010
624-91-9*0
14.6 MethoxyCH3O (g)C[O]28.9021.53± 0.34kJ/mol31.03392 ±
0.00088
2143-68-2*0
14.6 Methoxide[CH3O]- (g)C[O-]-122.54-130.27± 0.35kJ/mol31.03447 ±
0.00088
3315-60-4*0
12.1 Methyl nitriteCH3ONO (cr,l)CON=O-88.69± 0.56kJ/mol61.0401 ±
0.0010
624-91-9*500
11.3 WaterH2O (cr,l)O-286.300-285.828± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500

Most Influential reactions involving [CH3OH]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.3452077.2 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.846 ± 0.005 eVMacNeil 1977, note unc3
0.3452077.1 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.853 ± 0.005 eVKarlsson 1977
0.1792659.7 CH3CH2OH (g) [CH3OH]+ (g) → [CH3CH2OH]+ (g) CH3OH (g) ΔrH°(0 K) = -0.479 ± 0.036 eVRuscic W1RO, Bodi 2012
0.0982100.6 [CH2OH2]+ (g) → [CH3OH]+ (g) ΔrH°(0 K) = 7.38 ± 1.2 kcal/molRuscic W1RO
0.0862077.3 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.85 ± 0.01 eVBerkowitz 1978
0.0832100.5 [CH2OH2]+ (g) → [CH3OH]+ (g) ΔrH°(0 K) = 7.36 ± 1.3 kcal/molRuscic CBS-n
0.0832100.3 [CH2OH2]+ (g) → [CH3OH]+ (g) ΔrH°(0 K) = 7.20 ± 1.3 kcal/molRuscic G4
0.0722100.2 [CH2OH2]+ (g) → [CH3OH]+ (g) ΔrH°(0 K) = 7.06 ± 1.4 kcal/molRuscic G3X
0.0632100.1 [CH2OH2]+ (g) → [CH3OH]+ (g) ΔrH°(0 K) = 7.14 ± 1.5 kcal/molRuscic G3B3
0.0552100.4 [CH2OH2]+ (g) → [CH3OH]+ (g) ΔrH°(0 K) = 6.64 ± 1.6 kcal/molRuscic CBS-n
0.0532659.3 CH3CH2OH (g) [CH3OH]+ (g) → [CH3CH2OH]+ (g) CH3OH (g) ΔrH°(0 K) = -0.491 ± 0.066 eVRuscic G4
0.0422659.6 CH3CH2OH (g) [CH3OH]+ (g) → [CH3CH2OH]+ (g) CH3OH (g) ΔrH°(0 K) = -0.549 ± 0.068 (×1.091) eVRuscic CBS-n
0.0332659.2 CH3CH2OH (g) [CH3OH]+ (g) → [CH3CH2OH]+ (g) CH3OH (g) ΔrH°(0 K) = -0.483 ± 0.084 eVRuscic G3X
0.0312659.1 CH3CH2OH (g) [CH3OH]+ (g) → [CH3CH2OH]+ (g) CH3OH (g) ΔrH°(0 K) = -0.485 ± 0.086 eVRuscic G3B3
0.0292659.5 CH3CH2OH (g) [CH3OH]+ (g) → [CH3CH2OH]+ (g) CH3OH (g) ΔrH°(0 K) = -0.564 ± 0.089 eVRuscic CBS-n
0.0212077.8 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.85 ± 0.02 eVWatanabe 1954, Watanabe 1962
0.0212077.7 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.85 ± 0.02 eVCocksey 1971
0.0212077.6 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.85 ± 0.02 eVBaker 1971, est unc
0.0212077.5 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.84 ± 0.02 eVRefaey 1968
0.0202077.9 CH3OH (g) → [CH3OH]+ (g) ΔrH°(0 K) = 10.83 ± 0.02 (×1.022) eVDewar 1969a, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.