Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
MethoxyCH3O (g)C[O]28.9021.53± 0.34kJ/mol31.03392 ±
0.00088
2143-68-2*0

Representative Geometry of CH3O (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3O (g)

The 20 contributors listed below account only for 48.5% of the provenance of ΔfH° of CH3O (g).
A total of 170 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
7.82113.1 CH3OH (g) F- (g) → [CH3O]- (g) HF (g) ΔrH°(0 K) = 0.462 ± 0.003 (×3.292) eVDeTuri 1999, Ervin 2002
6.92115.1 CH3O (g) → CH3 (g) O (g) ΔrH°(0 K) = 87.8 ± 0.3 kcal/molOsborn 1995, Osborn 1997
3.52082.2 CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -182.72 ± 0.05 kcal/molRossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion
3.32116.1 CH3O (g) → H2CO (g) H (g) ΔrH°(0 K) = 6950 ± 150 cm-1Dertinger 1995
2.72115.10 CH3O (g) → CH3 (g) O (g) ΔrH°(0 K) = 366.45 ± 2 kJ/molMarenich 2006, est unc
2.12106.9 [CH3O]- (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 413.01 ± 0.50 kcal/molMatus 2007
2.12108.1 CH3OH (g) → CH3O (g) H (g) ΔrH°(0 K) = 436.14 ± 2 kJ/molMarenich 2006, est unc
2.02104.1 [CH3O]- (g) → CH3O (g) ΔrH°(0 K) = 12655 ± 15 cm-1Nee 2006
2.02102.11 CH3O (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 376.52 ± 0.3 (×1.874) kcal/molFeller 2008
1.82136.9 CH2OH (g) → CH3O (g) ΔrH°(0 K) = 9.62 ± 0.50 kcal/molMatus 2007
1.82116.11 CH3O (g) → H2CO (g) H (g) ΔrH°(0 K) = 79.62 ± 2 (×1.215) kJ/molMarenich 2006, est unc
1.72116.12 CH3O (g) → H2CO (g) H (g) ΔrH°(0 K) = 6653 ± 200 (×1.022) cm-1Kamarchik 2012, est unc
1.72102.10 CH3O (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 376.49 ± 0.50 (×1.189) kcal/molMatus 2007
1.52102.9 CH3O (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 1574.97 ± 2 (×1.354) kJ/molMarenich 2006, est unc
1.42103.1 CH3O (g) → [CH3O]+ (g) ΔrH°(0 K) = 10.700 ± 0.015 eVRuscic 1991, note CH3O
1.22109.9 CH3OH (g) → [CH3O]- (g) H+ (g) ΔrH°(0 K) = 381.8 ± 0.50 (×1.164) kcal/molMatus 2007
1.12110.1 [CH3O]- (g) H2O (g) → CH3OH (g) [OH]- (g) ΔrH°(0 K) = 0.363 ± 0.004 (×6.442) eVDeTuri 1999, Ervin 2002
1.12741.1 CH3CH2OH (g) CH3O (g) → CH3OH (g) CH3CH2O (g, A 2A') ΔrH°(0 K) = 0.92 ± 0.50 kcal/molMatus 2007, est unc
1.12740.6 CH3CH2OH (g) CH3O (g) → CH3OH (g) CH3CH2O (g, X 2A") ΔrH°(0 K) = -0.19 ± 0.50 kcal/molMatus 2007, est unc
0.82136.10 CH2OH (g) → CH3O (g) ΔrH°(0 K) = 3535 ± 200 (×1.325) cm-1Kamarchik 2012, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3O (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
90.4 Methoxide[CH3O]- (g)C[O-]-122.54-130.27± 0.35kJ/mol31.03447 ±
0.00088
3315-60-4*0
27.2 MethanolCH3OH (g)CO-189.82-200.71± 0.16kJ/mol32.04186 ±
0.00090
67-56-1*0
26.7 MethanolCH3OH (l)CO-235.07-238.41± 0.17kJ/mol32.04186 ±
0.00090
67-56-1*500
23.0 Methyloxoniumylidene[CH3O]+ (g)C[O+]1062.431054.62± 0.72kJ/mol31.03337 ±
0.00088
58157-09-8*0
21.6 Hydroxymethylium[CH2OH]+ (g)[CH2+]O717.85709.91± 0.19kJ/mol31.03337 ±
0.00088
18682-95-6*0
15.5 HydroxymethylCH2OH (g)[CH2]O-10.26-16.57± 0.33kJ/mol31.03392 ±
0.00088
2597-43-5*0
15.1 EthoxyCH3CH2O (g, X 2A")CC[O]1.13-12.77± 0.51kJ/mol45.0605 ±
0.0017
2154-50-9*51
15.1 EthoxyCH3CH2O (g)CC[O]1.13-12.29± 0.51kJ/mol45.0605 ±
0.0017
2154-50-9*0
15.0 EthoxyCH3CH2O (g, A 2A')CC[O]5.38-9.05± 0.51kJ/mol45.0605 ±
0.0017
2154-50-9*52
14.6 Ethoxide[CH3CH2O]- (g)CC[O-]-164.14-179.08± 0.52kJ/mol45.0610 ±
0.0017
16331-64-9*0

Most Influential reactions involving CH3O (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6892104.1 [CH3O]- (g) → CH3O (g) ΔrH°(0 K) = 12655 ± 15 cm-1Nee 2006
0.2462103.1 CH3O (g) → [CH3O]+ (g) ΔrH°(0 K) = 10.700 ± 0.015 eVRuscic 1991, note CH3O
0.1492104.2 [CH3O]- (g) → CH3O (g) ΔrH°(0 K) = 1.572 ± 0.004 eVRamond 2000
0.0952104.3 [CH3O]- (g) → CH3O (g) ΔrH°(0 K) = 1.568 ± 0.005 eVOsborn 1998
0.0882103.12 CH3O (g) → [CH3O]+ (g) ΔrH°(0 K) = 10.692 ± 0.025 eVMatus 2007, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.