Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].
|
Di-mu-hydrodihydrodisilicon |
Formula: HSi(HSiHH) (g, trans-singlet) |
CAS RN: 129970-82-7 |
ATcT ID: 129970-82-7*12 |
SMILES: [SiH+]([H-]1)[H-][SiH+]1 |
InChI: InChI=1S/H4Si2/c1-3-2-4-1/h1-2H |
InChIKey: OVPPCVXFWUPQTN-UHFFFAOYSA-N |
Hills Formula: H4Si2 |
2D Image: |
|
Aliases: HSi(HSiHH); Di-mu-hydrodihydrodisilicon; HSiH2SiH; 165306-20-7; 165306-21-8 |
Relative Molecular Mass: 60.20276 ± 0.00066 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
374.8 | 364.4 | ± 2.3 | kJ/mol |
|
3D Image of HSi(HSiHH) (g, trans-singlet) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HSi(HSiHH) (g, trans-singlet)The 20 contributors listed below account only for 69.9% of the provenance of ΔfH° of HSi(HSiHH) (g, trans-singlet). A total of 69 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 14.0 | 8883.6 | HSi(HSiHH) (g, trans-singlet) → SiH2SiH2 (g, singlet)  | ΔrH°(0 K) = -20.46 ± 0.70 kcal/mol | Dolgonos 2008, est unc | 8.4 | 8883.5 | HSi(HSiHH) (g, trans-singlet) → SiH2SiH2 (g, singlet)  | ΔrH°(0 K) = -20.51 ± 0.90 kcal/mol | Sari 2003, McCarthy 2006 | 4.7 | 8883.4 | HSi(HSiHH) (g, trans-singlet) → SiH2SiH2 (g, singlet)  | ΔrH°(0 K) = -20.03 ± 1.2 kcal/mol | Ruscic W1RO | 4.6 | 8886.4 | HSi(HSiHH) (g, trans-singlet) → 2 SiH2 (g, singlet)  | ΔrH°(0 K) = 40.33 ± 1.50 kcal/mol | Ruscic W1RO | 4.0 | 8883.2 | HSi(HSiHH) (g, trans-singlet) → SiH2SiH2 (g, singlet)  | ΔrH°(0 K) = -20.27 ± 1.3 kcal/mol | Ruscic G4 | 4.0 | 8886.2 | HSi(HSiHH) (g, trans-singlet) → 2 SiH2 (g, singlet)  | ΔrH°(0 K) = 39.45 ± 1.60 kcal/mol | Ruscic G4 | 3.9 | 8720.1 | Si (cr,l) + 2 F2 (g) → SiF4 (g)  | ΔrH°(298.15 K) = -385.98 ± 0.19 kcal/mol | Wise 1963, Wise 1963, Wise 1962 | 3.5 | 8883.1 | HSi(HSiHH) (g, trans-singlet) → SiH2SiH2 (g, singlet)  | ΔrH°(0 K) = -20.41 ± 1.4 kcal/mol | Ruscic G3X | 3.4 | 8886.1 | HSi(HSiHH) (g, trans-singlet) → 2 SiH2 (g, singlet)  | ΔrH°(0 K) = 39.16 ± 1.72 kcal/mol | Ruscic G3X | 2.6 | 8883.3 | HSi(HSiHH) (g, trans-singlet) → SiH2SiH2 (g, singlet)  | ΔrH°(0 K) = -20.48 ± 1.6 kcal/mol | Ruscic CBS-n | 2.4 | 8813.1 | SiH3SiH3 (g) → 2 Si (cr,l) + 3 H2 (g)  | ΔrH°(298.15 K) = -19.1 ± 0.6 (×1.61) kcal/mol | Gunn 1961, est unc | 2.2 | 8886.3 | HSi(HSiHH) (g, trans-singlet) → 2 SiH2 (g, singlet)  | ΔrH°(0 K) = 39.41 ± 2.16 kcal/mol | Ruscic CBS-n | 2.1 | 8777.1 | SiH4 (g) → Si (cr,l) + 2 H2 (g)  | ΔrH°(298.15 K) = -8.3 ± 0.5 kcal/mol | Gunn 1961, Gurvich TPIS, est unc | 1.7 | 8663.2 | Si (cr,l) → Si (g)  | ΔrG°(1525 K) = 231.1 ± 2.0 kJ/mol | Batdorf 1959, 3rd Law | 1.7 | 8836.6 | SiH2SiH2 (g, singlet) → 2 Si (g) + 4 H (g)  | ΔrH°(0 K) = 1475.09 ± 4.6 kJ/mol | Guo 2023 | 1.5 | 546.1 | SiF4 (g) + 2 H2O (cr,l) → Si (cr,l) + O2 (g) + 4 HF (aq, 5 H2O)  | ΔrH°(298.15 K) = 899.77 ± 1.20 kJ/mol | Paulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Johnson 1973 | 1.1 | 8848.1 | SiH2SiH2 (g, singlet) + 2 H (g) → SiH3SiH3 (g)  | ΔrH°(0 K) = -630.61 ± 4.6 kJ/mol | Guo 2023 | 1.1 | 8698.6 | SiO2 (cr,l) + Si (cr,l) → 2 SiO (g)  | ΔrG°(1618 K) = 37.94 ± 0.29 kcal/mol | Ramstad 1961, 3rd Law, Gurvich TPIS | 1.0 | 8789.6 | SiH2 (g, singlet) → Si (g) + 2 H (g)  | ΔrH°(0 K) = 145.8 ± 0.4 kcal/mol | Feller 1999a, Feller 1999a | 1.0 | 8720.3 | Si (cr,l) + 2 F2 (g) → SiF4 (g)  | ΔrH°(298.15 K) = -1615.78 ± 0.46 (×3.292) kJ/mol | Johnson 1986, Johnson 1986 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HSi(HSiHH) (g, trans-singlet) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
|
Most Influential reactions involving HSi(HSiHH) (g, trans-singlet)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 8881.1 | HSi(HSiHH) (g) → HSi(HSiHH) (g, trans-singlet)  | ΔrH°(0 K) = 0 ± 0 cm-1 | triv, Ruscic W1RO, Ruscic G4, Ruscic CBS-n | 1.000 | 8882.1 | HSi(HSiHH) (g, trans) → HSi(HSiHH) (g, trans-singlet)  | ΔrH°(0 K) = 0 ± 0 cm-1 | triv, Ruscic W1RO, Ruscic G4, Ruscic CBS-n | 0.341 | 8873.4 | HSi(HSiHH) (g, trans-singlet) → [HSi(HSiHH)]+ (g, trans)  | ΔrH°(0 K) = 8.330 ± 0.040 eV | Ruscic W1RO | 0.317 | 8885.4 | HSi(HSiHH) (g, trans-triplet) → HSi(HSiHH) (g, trans-singlet)  | ΔrH°(0 K) = -40.08 ± 1.2 kcal/mol | Ruscic W1RO | 0.306 | 8883.6 | HSi(HSiHH) (g, trans-singlet) → SiH2SiH2 (g, singlet)  | ΔrH°(0 K) = -20.46 ± 0.70 kcal/mol | Dolgonos 2008, est unc | 0.270 | 8885.2 | HSi(HSiHH) (g, trans-triplet) → HSi(HSiHH) (g, trans-singlet)  | ΔrH°(0 K) = -41.23 ± 1.3 kcal/mol | Ruscic G4 | 0.241 | 8875.4 | [HSi(HSiHH)]- (g, trans) → HSi(HSiHH) (g, trans-singlet)  | ΔrH°(0 K) = 0.894 ± 0.050 eV | Ruscic W1RO | 0.233 | 8885.1 | HSi(HSiHH) (g, trans-triplet) → HSi(HSiHH) (g, trans-singlet)  | ΔrH°(0 K) = -40.75 ± 1.4 kcal/mol | Ruscic G3X | 0.185 | 8883.5 | HSi(HSiHH) (g, trans-singlet) → SiH2SiH2 (g, singlet)  | ΔrH°(0 K) = -20.51 ± 0.90 kcal/mol | Sari 2003, McCarthy 2006 | 0.184 | 8892.4 | [HSi(HSiHH)]- (g, trans) + HSi(HSiHH) (g, cis-singlet) → HSi(HSiHH) (g, trans-singlet) + [HSi(HSiHH)]- (g, cis)  | ΔrH°(0 K) = -0.70 ± 0.85 kcal/mol | Ruscic W1RO | 0.181 | 8889.4 | HSi(HSiHH) (g, trans-singlet) + [HSi(HSiHH)]+ (g, cis) → [HSi(HSiHH)]+ (g, trans) + HSi(HSiHH) (g, cis-singlet)  | ΔrH°(0 K) = -0.63 ± 0.85 kcal/mol | Ruscic W1RO | 0.180 | 8884.6 | HSi(HSiHH) (g, cis-singlet) → HSi(HSiHH) (g, trans-singlet)  | ΔrH°(0 K) = -2.60 ± 0.70 kcal/mol | Dolgonos 2008, est unc | 0.178 | 8885.3 | HSi(HSiHH) (g, trans-triplet) → HSi(HSiHH) (g, trans-singlet)  | ΔrH°(0 K) = -39.96 ± 1.6 kcal/mol | Ruscic CBS-n | 0.164 | 8892.1 | [HSi(HSiHH)]- (g, trans) + HSi(HSiHH) (g, cis-singlet) → HSi(HSiHH) (g, trans-singlet) + [HSi(HSiHH)]- (g, cis)  | ΔrH°(0 K) = -0.63 ± 0.90 kcal/mol | Ruscic G3X | 0.164 | 8892.2 | [HSi(HSiHH)]- (g, trans) + HSi(HSiHH) (g, cis-singlet) → HSi(HSiHH) (g, trans-singlet) + [HSi(HSiHH)]- (g, cis)  | ΔrH°(0 K) = -0.66 ± 0.90 kcal/mol | Ruscic G4 | 0.162 | 8889.1 | HSi(HSiHH) (g, trans-singlet) + [HSi(HSiHH)]+ (g, cis) → [HSi(HSiHH)]+ (g, trans) + HSi(HSiHH) (g, cis-singlet)  | ΔrH°(0 K) = -0.74 ± 0.90 kcal/mol | Ruscic G3X | 0.162 | 8889.2 | HSi(HSiHH) (g, trans-singlet) + [HSi(HSiHH)]+ (g, cis) → [HSi(HSiHH)]+ (g, trans) + HSi(HSiHH) (g, cis-singlet)  | ΔrH°(0 K) = -0.52 ± 0.90 kcal/mol | Ruscic G4 | 0.162 | 8875.2 | [HSi(HSiHH)]- (g, trans) → HSi(HSiHH) (g, trans-singlet)  | ΔrH°(0 K) = 0.905 ± 0.061 eV | Ruscic G4 | 0.133 | 8892.3 | [HSi(HSiHH)]- (g, trans) + HSi(HSiHH) (g, cis-singlet) → HSi(HSiHH) (g, trans-singlet) + [HSi(HSiHH)]- (g, cis)  | ΔrH°(0 K) = -0.72 ± 1.00 kcal/mol | Ruscic CBS-n | 0.131 | 8889.3 | HSi(HSiHH) (g, trans-singlet) + [HSi(HSiHH)]+ (g, cis) → [HSi(HSiHH)]+ (g, trans) + HSi(HSiHH) (g, cis-singlet)  | ΔrH°(0 K) = -1.28 ± 1.00 kcal/mol | Ruscic CBS-n |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024)
[DOI: 10.1039/D4FD00110A]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|