Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].
|
Silicon |
Formula: Si (g) |
CAS RN: 7440-21-3 |
ATcT ID: 7440-21-3*0 |
SMILES: [Si] |
InChI: InChI=1S/Si |
InChIKey: XUIMIQQOPSSXEZ-UHFFFAOYSA-N |
Hills Formula: Si1 |
2D Image: |
|
Aliases: Si; Silicon; Silicon atom; Atomic silicon; Silicon radical; Monosilicon; Si-atom |
Relative Molecular Mass: 28.08550 ± 0.00030 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
450.34 | 454.68 | ± 0.56 | kJ/mol |
|
3D Image of Si (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of Si (g)The 20 contributors listed below account only for 85.6% of the provenance of ΔfH° of Si (g). A total of 25 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 17.0 | 8720.1 | Si (cr,l) + 2 F2 (g) → SiF4 (g)  | ΔrH°(298.15 K) = -385.98 ± 0.19 kcal/mol | Wise 1963, Wise 1963, Wise 1962 | 7.6 | 8663.2 | Si (cr,l) → Si (g)  | ΔrG°(1525 K) = 231.1 ± 2.0 kJ/mol | Batdorf 1959, 3rd Law | 6.8 | 8813.1 | SiH3SiH3 (g) → 2 Si (cr,l) + 3 H2 (g)  | ΔrH°(298.15 K) = -19.1 ± 0.6 (×1.61) kcal/mol | Gunn 1961, est unc | 6.8 | 546.1 | SiF4 (g) + 2 H2O (cr,l) → Si (cr,l) + O2 (g) + 4 HF (aq, 5 H2O)  | ΔrH°(298.15 K) = 899.77 ± 1.20 kJ/mol | Paulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Johnson 1973 | 6.4 | 8777.1 | SiH4 (g) → Si (cr,l) + 2 H2 (g)  | ΔrH°(298.15 K) = -8.3 ± 0.5 kcal/mol | Gunn 1961, Gurvich TPIS, est unc | 4.8 | 8698.6 | SiO2 (cr,l) + Si (cr,l) → 2 SiO (g)  | ΔrG°(1618 K) = 37.94 ± 0.29 kcal/mol | Ramstad 1961, 3rd Law, Gurvich TPIS | 4.7 | 8720.3 | Si (cr,l) + 2 F2 (g) → SiF4 (g)  | ΔrH°(298.15 K) = -1615.78 ± 0.46 (×3.292) kJ/mol | Johnson 1986, Johnson 1986 | 4.1 | 8690.5 | SiO (g) → Si (g) + O (g)  | ΔrH°(0 K) = 189.99 ± 0.30 kcal/mol | Feller 2008 | 4.1 | 8690.10 | SiO (g) → Si (g) + O (g)  | ΔrH°(0 K) = 190.23 ± 0.30 kcal/mol | Karton 2011 | 3.7 | 8681.1 | Si (cr,l) + O2 (g) → SiO2 (cr,l)  | ΔrH°(298.15 K) = -217.58 ± 0.35 (×1.164) kcal/mol | Good 1964, Good 1964, Good 1962, King 1951 | 3.1 | 8717.8 | SiF4 (g) → Si (g) + 4 F (g)  | ΔrH°(0 K) = 565.92 ± 0.30 kcal/mol | Karton 2011 | 2.9 | 8663.3 | Si (cr,l) → Si (g)  | ΔrH°(1932 K) = 393.1 ± 2.5 (×1.297) kJ/mol | Drowart 1960, 2nd Law, Gurvich TPIS | 2.3 | 8690.9 | SiO (g) → Si (g) + O (g)  | ΔrH°(0 K) = 190.42 ± 0.40 kcal/mol | Karton 2011 | 1.8 | 8762.7 | SiF4 (g) → SiF (g, doublet) + 3 F (g)  | ΔrH°(0 K) = 425.42 ± 0.25 kcal/mol | Karton 2007b | 1.7 | 8717.7 | SiF4 (g) → Si (g) + 4 F (g)  | ΔrH°(0 K) = 566.39 ± 0.40 kcal/mol | Karton 2011 | 1.6 | 8663.6 | Si (cr,l) → Si (g)  | ΔrG°(1850 K) = 44.05 ± 0.50 (×2.044) kcal/mol | Grieveson 1960, 3rd Law, est unc | 1.6 | 8698.8 | SiO2 (cr,l) + Si (cr,l) → 2 SiO (g)  | ΔrG°(1403 K) = 54.5 ± 0.5 kcal/mol | Emons 1972, 3rd Law | 1.4 | 8717.10 | SiF4 (g) → Si (g) + 4 F (g)  | ΔrH°(0 K) = 565.89 ± 0.44 kcal/mol | Martin 1999d, note unc | 1.2 | 8762.5 | SiF4 (g) → SiF (g, doublet) + 3 F (g)  | ΔrH°(0 K) = 425.49 ± 0.30 kcal/mol | Karton 2007b | 1.2 | 8762.6 | SiF4 (g) → SiF (g, doublet) + 3 F (g)  | ΔrH°(0 K) = 425.58 ± 0.30 kcal/mol | Karton 2007b |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of Si (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Silicon anion | Si- (g) | | 316.28 | 319.26 | ± 0.56 | kJ/mol | 28.08605 ± 0.00030 | 14337-02-1*0 | 100.0 | Silicon cation | Si+ (g) | | 1236.86 | 1240.99 | ± 0.56 | kJ/mol | 28.08495 ± 0.00030 | 14067-07-3*0 | 100.0 | Silicon atom dication | [Si]+2 (g) | | 2814.00 | 2816.98 | ± 0.56 | kJ/mol | 28.08440 ± 0.00030 | 14175-55-4*0 | 99.9 | Silicon atom trication | [Si]+3 (g) | | 6045.58 | 6048.56 | ± 0.56 | kJ/mol | 28.08385 ± 0.00030 | 14175-56-5*0 | 99.9 | Silicon atom tetracation | [Si]+4 (g) | | 10401.10 | 10404.08 | ± 0.56 | kJ/mol | 28.08331 ± 0.00030 | 22537-24-2*0 | 85.8 | Disilane | SiH3SiH3 (g) | | 92.0 | 75.9 | ± 1.3 | kJ/mol | 62.21864 ± 0.00073 | 1590-87-0*0 | 85.4 | Silane | SiH4 (g) | | 42.66 | 33.04 | ± 0.63 | kJ/mol | 32.11726 ± 0.00041 | 7803-62-5*0 | 80.2 | Silylidyne | SiH (g) | | 371.23 | 373.03 | ± 0.67 | kJ/mol | 29.09344 ± 0.00031 | 13774-94-2*0 | 76.6 | Fluorosilylidyne | SiF (g, doublet) | | -60.32 | -58.48 | ± 0.62 | kJ/mol | 47.08390 ± 0.00030 | 11128-24-8*1 | 76.6 | Fluorosilylidyne | SiF (g) | | -60.32 | -58.48 | ± 0.62 | kJ/mol | 47.08390 ± 0.00030 | 11128-24-8*0 |
|
Most Influential reactions involving Si (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.852 | 8664.1 | Si (g) → Si+ (g)  | ΔrH°(0 K) = 65747.76 ± 0.25 cm-1 | Martin 1983a, Brown 1974 | 0.834 | 8668.1 | Si- (g) → Si (g)  | ΔrH°(0 K) = 11207.246 ± 0.008 cm-1 | Blondel 2005 | 0.728 | 8669.8 | Si2 (g) → 2 Si (g)  | ΔrH°(0 K) = 74.96 ± 0.30 kcal/mol | Feller 2008 | 0.343 | 8928.1 | SiH3I (g) → Si (g) + 3 H (g) + I (g)  | ΔrH°(0 K) = 287.15 ± 1.00 kcal/mol | Grant 2009c | 0.333 | 8739.5 | SiF2 (g, singlet) → Si (g) + 2 F (g)  | ΔrH°(0 K) = 294.7 ± 0.5 kcal/mol | Feller 1999a, Feller 1999a | 0.257 | 8810.8 | SiH3SiH3 (g) → 2 Si (g) + 6 H (g)  | ΔrH°(0 K) = 503.09 ± 0.30 kcal/mol | Karton 2011, Karton 2007b | 0.244 | 8790.6 | SiH2 (g, triplet) → Si (g) + 2 H (g)  | ΔrH°(0 K) = 124.5 ± 0.4 kcal/mol | Feller 1999a, Feller 1999a | 0.225 | 8803.10 | SiH (g) → Si (g) + H (g)  | ΔrH°(0 K) = 70.47 ± 0.20 kcal/mol | Feller 2008, Feller 1999a, Feller 1999a | 0.188 | 8679.4 | [SiO2]+ (g) → Si (g) + 2 O (g)  | ΔrH°(0 K) = -1.51 ± 1.50 kcal/mol | Ruscic W1RO | 0.172 | 8922.7 | SiH3F (g) → Si (g) + 3 H (g) + F (g)  | ΔrH°(0 K) = 363.68 ± 0.30 kcal/mol | Karton 2011 | 0.165 | 8679.2 | [SiO2]+ (g) → Si (g) + 2 O (g)  | ΔrH°(0 K) = -1.20 ± 1.60 kcal/mol | Ruscic G4 | 0.165 | 8690.5 | SiO (g) → Si (g) + O (g)  | ΔrH°(0 K) = 189.99 ± 0.30 kcal/mol | Feller 2008 | 0.165 | 8690.10 | SiO (g) → Si (g) + O (g)  | ΔrH°(0 K) = 190.23 ± 0.30 kcal/mol | Karton 2011 | 0.164 | 8668.2 | Si- (g) → Si (g)  | ΔrH°(0 K) = 11207.252 ± 0.018 cm-1 | Blondel 2001 | 0.164 | 8680.4 | [SiO2]- (g) → Si (g) + 2 O (g)  | ΔrH°(0 K) = 338.84 ± 1.50 kcal/mol | Ruscic W1RO | 0.158 | 8694.4 | [SiO]- (g) → Si (g) + O (g)  | ΔrH°(0 K) = 191.05 ± 1.50 kcal/mol | Ruscic W1RO | 0.149 | 8754.9 | SiF (g, doublet) → Si (g) + F (g)  | ΔrH°(0 K) = 140.62 ± 0.25 kcal/mol | Karton 2007b | 0.147 | 8664.2 | Si (g) → Si+ (g)  | ΔrH°(0 K) = 65747.5 ± 0.6 cm-1 | Moore 1970 | 0.144 | 8669.7 | Si2 (g) → 2 Si (g)  | ΔrH°(0 K) = 74.2 ± 0.4 (×1.682) kcal/mol | Feller 1999a, Feller 1999a | 0.144 | 8680.2 | [SiO2]- (g) → Si (g) + 2 O (g)  | ΔrH°(0 K) = 339.58 ± 1.60 kcal/mol | Ruscic G4 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024)
[DOI: 10.1039/D4FD00110A]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|