Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Nitrogen trifluoride

Formula: NF3 (g)
CAS RN: 7783-54-2
ATcT ID: 7783-54-2*0
SMILES: N(F)(F)F
InChI: InChI=1S/F3N/c1-4(2)3
InChIKey: GVGCUCJTUSOZKP-UHFFFAOYSA-N
Hills Formula: F3N1

2D Image:

N(F)(F)F
Aliases: NF3; Nitrogen trifluoride; N,N-Difluorohypofluorous amide; Perfluoroammonia; Trifluoroamine; Trifluoroammonia
Relative Molecular Mass: 71.001950 ± 0.000070

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-125.84-131.56± 0.55kJ/mol

3D Image of NF3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of NF3 (g)

The 20 contributors listed below account only for 86.2% of the provenance of ΔfH° of NF3 (g).
A total of 28 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
24.92150.1 NF3 (g) + 3/2 H2 (g) → 1/2 N2 (g) + 3 HF (aq, 100 H2O) ΔrH°(298.15 K) = -199.46 ± 0.22 kcal/molSinke 1965a
18.52152.1 1/2 N2 (g) + 3/2 F2 (g) → NF3 (g) ΔrH°(298.15 K) = -31.44 ± 0.30 kcal/molSinke 1967
13.12149.1 NF3 (g) + 3/2 H2 (g) → 1/2 N2 (g) + 3 HF (aq) ΔrH°(298.15 K) = -871.8 ± 1.2 kJ/molArmstrong 1959
4.62154.6 NF3 (g) + 3 H (g) → NH3 (g) + 3 F (g) ΔrH°(0 K) = -78.59 ± 0.6 kcal/molFeller 2008, est unc
3.72165.1 NF3 (g) → [NF2]+ (g, singlet) F (g) ΔrH°(0 K) = 14.100 ± 0.008 eVBerkowitz 1984
3.62155.6 NF2 (g) → N (g) + 2 F (g) ΔrH°(0 K) = 140.92 ± 0.3 kcal/molFeller 2008
3.32144.6 NF3 (g) → N (g) + 3 F (g) ΔrH°(0 K) = 197.89 ± 0.7 kcal/molFeller 2008
2.02156.1 NF2 (g) → [NF2]+ (g, singlet) ΔrH°(0 K) = 11.628 ± 0.011 eVBerkowitz 1984
1.82144.9 NF3 (g) → N (g) + 3 F (g) ΔrH°(0 K) = 832.1 ± 3.0 (×1.325) kJ/molKlopper 2010a
1.6544.2 H2O (cr,l) F2 (g) → 2 HF (aq, 5 H2O) + 1/2 O2 (g) ΔrH°(298.15 K) = -356.66 ± 0.40 kJ/molPaulechka 2020, Johnson 1987, Vorobev 1960, Hummel 1959, Johnson 1973
1.52167.6 NF (g, triplet) → N (g) F (g) ΔrH°(0 K) = 75.35 ± 0.3 kcal/molFeller 2008
1.42162.6 NF3 (g) → NF2 (g) F (g) ΔrH°(0 K) = 56.97 ± 0.6 kcal/molFeller 2008, est unc
1.21719.1 NH3 (g) HF (l) → (NH4)F (cr,l) ΔrH°(298.15 K) = -28.2 ± 0.2 kcal/molHiggins 1961, NBS Tables 1989
0.72144.8 NF3 (g) → N (g) + 3 F (g) ΔrH°(0 K) = 197.96 ± 1.50 kcal/molRicca 1998b, est unc
0.72144.7 NF3 (g) → N (g) + 3 F (g) ΔrH°(0 K) = 197.23 ± 1.50 kcal/molGrant 2011
0.6537.3 HF (g) → HF (aq) ΔrH°(298.15 K) = -14.81 ± 0.10 kcal/molVanderzee 1971, Westrum 1949, Davis 1961, Ruterjans 1969
0.62153.1 CF3CF3 (g) + 2 NF3 (g) → 6 CF4 (g) N2 (g) ΔrH°(298.15 K) = -311.7 ± 3.0 kcal/molSinke 1966
0.62179.6 NF2NF2 (g, trans) → 2 N (g) + 4 F (g) ΔrH°(0 K) = 300.63 ± 1.50 kcal/molGrant 2011
0.68722.1 SiO2 (vitr) + 2 F2 (g) → SiF4 (g) O2 (g) ΔrH°(298.15 K) = -170.04 ± 0.25 kcal/molWise 1963, Wise 1963
0.62156.2 NF2 (g) → [NF2]+ (g, singlet) ΔrH°(0 K) = 11.62 ± 0.02 eVCornford 1971d

Top 10 species with enthalpies of formation correlated to the ΔfH° of NF3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
55.2 Difluoroaminylium[NF2]+ (g, singlet)[N+](F)F1157.821154.93± 0.71kJ/mol52.002998 ±
0.000070
31685-31-1*2
55.2 Difluoroaminylium[NF2]+ (g)[N+](F)F1157.821154.93± 0.71kJ/mol52.002998 ±
0.000070
31685-31-1*0
38.3 DifluoroamidogenNF2 (g)[N](F)F36.2433.66± 0.63kJ/mol52.003546 ±
0.000070
3744-07-8*0
38.1 TetrafluorohydrazineNF2NF2 (g, trans)N(F)(F)N(F)F-13.4-22.9± 1.4kJ/mol104.00709 ±
0.00014
10036-47-2*1
38.1 TetrafluorohydrazineNF2NF2 (g)N(F)(F)N(F)F-13.4-22.5± 1.4kJ/mol104.00709 ±
0.00014
10036-47-2*0
37.9 TetrafluorohydrazineNF2NF2 (g, gauche)N(F)(F)N(F)F-12.5-22.1± 1.4kJ/mol104.00709 ±
0.00014
10036-47-2*2
31.6 Ammonium fluoride(NH4)F (cr,l)[NH4+].[F-]-452.48-467.05± 0.38kJ/mol37.03690 ±
0.00029
12125-01-8*500
27.0 Hydrogen fluorideHF (aq, 100 H2O)F-322.01± 0.10kJ/mol20.006343 ±
0.000070
7664-39-3*828
26.9 Hydrogen fluorideHF (l)F-303.199± 0.099kJ/mol20.006343 ±
0.000070
7664-39-3*590
26.8 Hydrogen fluorideHF (aq, 300 H2O)F-322.16± 0.10kJ/mol20.006343 ±
0.000070
7664-39-3*831

Most Influential reactions involving NF3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6222165.1 NF3 (g) → [NF2]+ (g, singlet) F (g) ΔrH°(0 K) = 14.100 ± 0.008 eVBerkowitz 1984
0.3472150.1 NF3 (g) + 3/2 H2 (g) → 1/2 N2 (g) + 3 HF (aq, 100 H2O) ΔrH°(298.15 K) = -199.46 ± 0.22 kcal/molSinke 1965a
0.3352145.12 NF3 (g) → [NF3]+ (g) ΔrH°(0 K) = 12.644 ± 0.040 eVRuscic W1RO
0.2482149.1 NF3 (g) + 3/2 H2 (g) → 1/2 N2 (g) + 3 HF (aq) ΔrH°(298.15 K) = -871.8 ± 1.2 kJ/molArmstrong 1959
0.2472146.5 [NF3]- (g) → NF3 (g) ΔrH°(0 K) = 1.222 ± 0.050 eVRuscic W1RO
0.2042146.6 [NF3]- (g) → NF3 (g) ΔrH°(0 K) = 1.267 ± 0.055 eVGrant 2011
0.1852152.1 1/2 N2 (g) + 3/2 F2 (g) → NF3 (g) ΔrH°(298.15 K) = -31.44 ± 0.30 kcal/molSinke 1967
0.1772145.13 NF3 (g) → [NF3]+ (g) ΔrH°(0 K) = 12.639 ± 0.055 eVGrant 2011
0.1662146.2 [NF3]- (g) → NF3 (g) ΔrH°(0 K) = 1.312 ± 0.061 eVRuscic G4
0.1492166.6 NF3 (g) → [NF2]- (g) F (g) ΔrH°(0 K) = 1.380 ± 0.050 eVRuscic W1RO
0.1002145.9 NF3 (g) → [NF3]+ (g) ΔrH°(0 K) = 12.597 ± 0.073 eVRuscic G4
0.1002166.3 NF3 (g) → [NF2]- (g) F (g) ΔrH°(0 K) = 1.366 ± 0.061 eVRuscic G4
0.0852146.1 [NF3]- (g) → NF3 (g) ΔrH°(0 K) = 1.254 ± 0.085 eVRuscic G3X
0.0832145.14 NF3 (g) → [NF3]+ (g) ΔrH°(0 K) = 12.64 ± 0.08 eVRicca 1998b, est unc
0.0762146.4 [NF3]- (g) → NF3 (g) ΔrH°(0 K) = 1.294 ± 0.090 eVRuscic CBS-n
0.0732146.3 [NF3]- (g) → NF3 (g) ΔrH°(0 K) = 1.171 ± 0.092 eVRuscic CBS-n
0.0672162.6 NF3 (g) → NF2 (g) F (g) ΔrH°(0 K) = 56.97 ± 0.6 kcal/molFeller 2008, est unc
0.0622145.8 NF3 (g) → [NF3]+ (g) ΔrH°(0 K) = 12.656 ± 0.093 eVRuscic G3X
0.0592145.11 NF3 (g) → [NF3]+ (g) ΔrH°(0 K) = 12.542 ± 0.075 (×1.269) eVRuscic CBS-n
0.0542145.10 NF3 (g) → [NF3]+ (g) ΔrH°(0 K) = 12.647 ± 0.099 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.