Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

1-Butanol

Formula: CH3CH2CH2CH2OH (cr,l)
CAS RN: 71-36-3
ATcT ID: 71-36-3*500
SMILES: CCCCO
InChI: InChI=1S/C4H10O/c1-2-3-4-5/h5H,2-4H2,1H3
InChIKey: LRHPLDYGYMQRHN-UHFFFAOYSA-N
Hills Formula: C4H10O1

2D Image:

CCCCO
Aliases: CH3CH2CH2CH2OH; 1-Butanol; Butan-1-ol; n-Butanol; Butyl alcohol; 1-Butyl alcohol; Butanol; Butyl hydroxide; CCS 203; Hemostyp; Methylolpropane; n-Butyl alcohol; NSC 62782; Propylcarbinol
Relative Molecular Mass: 74.1216 ± 0.0033

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-312.82-327.10± 0.21kJ/mol

Top contributors to the provenance of ΔfH° of CH3CH2CH2CH2OH (cr,l)

The 20 contributors listed below account only for 84.4% of the provenance of ΔfH° of CH3CH2CH2CH2OH (cr,l).
A total of 56 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
32.35015.2 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -2675.93 ± 0.24 kJ/molDekker 1970, as quoted by NIST WebBook, mw conversion
19.25015.1 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -2676.12 ± 0.24 (×1.297) kJ/molMosselman 1975, mw conversion
9.25015.3 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -2675.53 ± 0.45 kJ/molGundry 1969, mw conversion
7.7125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
3.42376.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.72374.7 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/molSchley 2010
1.82228.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.75015.6 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -639.29 ± 0.20 (×1.242) kcal/molSkinner 1960, mw conversion
0.72228.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
0.72228.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
0.75015.5 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(303.15 K) = -2676.57 ± 0.61 (×2.65) kJ/molChao 1965, mw conversion
0.5115.11 H2O (g) → O (g) + 2 H (g) ΔrH°(0 K) = 917.80 ± 0.15 kJ/molThorpe 2021
0.52228.11 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
0.5157.1 OH (g) → [OH]+ (g) ΔrH°(0 K) = 104989 ± 5 (×2.327) cm-1Wiedmann 1992, note unc
0.4167.6 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1183 ± 0.0015 (×1.044) eVBodi 2014
0.3152.1 OH (g) → O (g) H (g) ΔrH°(0 K) = 35580 ± 15 cm-1Sun 2020
0.32374.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
0.31731.1 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/molVanderzee 1972c
0.32228.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
0.3169.1 [OH]- (g) → O- (g) H (g) ΔrH°(0 K) = 4.7796 ± 0.0010 (×2.044) eVMartin 2001, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2CH2CH2OH (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
84.3 1-ButanolCH3CH2CH2CH2OH (g)CCCCO-244.49-274.74± 0.24kJ/mol74.1216 ±
0.0033
71-36-3*0
52.9 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.669± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
50.9 WaterH2O (g, para)O-238.903-241.806± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*2
50.9 WaterH2O (g)O-238.903-241.806± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*0
50.9 WaterH2O (cr, l, eq.press.)O-286.275-285.802± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*499
50.9 WaterH2O (l, eq.press.)O-285.802± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
50.9 Oxonium[H3O]+ (aq)[OH3+]-285.801± 0.022kJ/mol19.02267 ±
0.00037
13968-08-6*800
50.9 WaterH2O (l)O-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
50.9 WaterH2O (cr,l)O-286.273-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
50.9 WaterH2O (g, ortho)O-238.618-241.806± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*1

Most Influential reactions involving CH3CH2CH2CH2OH (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9755016.1 CH3CH2CH2CH2OH (cr,l) → CH3CH2CH2CH2OH (g) ΔrH°(298.15 K) = 52.42 ± 0.13 kJ/molMajer 1985
0.4875015.2 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -2675.93 ± 0.24 kJ/molDekker 1970, as quoted by NIST WebBook, mw conversion
0.2905015.1 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -2676.12 ± 0.24 (×1.297) kJ/molMosselman 1975, mw conversion
0.1385015.3 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -2675.53 ± 0.45 kJ/molGundry 1969, mw conversion
0.0265015.6 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -639.29 ± 0.20 (×1.242) kcal/molSkinner 1960, mw conversion
0.0105015.5 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(303.15 K) = -2676.57 ± 0.61 (×2.65) kJ/molChao 1965, mw conversion
0.0015015.8 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(292.7 K) = -640.77 ± 0.30 (×3.364) kcal/molVerkade 1927, note old units
0.0005015.7 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -638.23 ± 0.10 (×13.17) kcal/molTjebbes 1960, mw conversion
0.0005015.9 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -638.23 ± 0.11 (×12.07) kcal/molTjebbes 1960, note old units
0.0005015.4 CH3CH2CH2CH2OH (cr,l) + 6 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -2641 ± 115 kJ/molDelafontaine 1973, mw conversion


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.