Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

1,3-Propanediyl

Formula: CH2CH2CH2 (g, singlet C2v TS EE)
CAS RN: 32458-33-6
ATcT ID: 32458-33-6*21
SMILES: [CH2]C[CH2]
InChI: InChI=1S/C3H6/c1-3-2/h1-3H2
InChIKey: CUJPFPXNDSIBPG-UHFFFAOYSA-N
Hills Formula: C3H6

2D Image:

[CH2]C[CH2]
Aliases: CH2CH2CH2; 1,3-Propanediyl; Trimethylene diradical; Trimethylene biradical; Trimethylene
Relative Molecular Mass: 42.0797 ± 0.0024

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
337.7323.0± 2.2kJ/mol

3D Image of CH2CH2CH2 (g, singlet C2v TS EE)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH2CH2CH2 (g, singlet C2v TS EE)

The 20 contributors listed below account only for 83.0% of the provenance of ΔfH° of CH2CH2CH2 (g, singlet C2v TS EE).
A total of 27 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
14.23344.2 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 5.29 ± 0.90 kcal/molRuscic G3X
14.23344.3 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 5.43 ± 0.90 kcal/molRuscic G4
11.53344.4 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 5.01 ± 1.0 kcal/molRuscic CBS-n
6.73377.2 CH2CH2CH2 (g, singlet C2v TS EE) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 4.59 ± 1.3 kcal/molRuscic G4
5.83377.1 CH2CH2CH2 (g, singlet C2v TS EE) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 4.19 ± 1.4 kcal/molRuscic G3X
4.43377.3 CH2CH2CH2 (g, singlet C2v TS EE) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 5.15 ± 1.6 kcal/molRuscic CBS-n
3.03356.4 CH3CH2CH2 (g) → CH3CH2CH3 (g) CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 9.45 ± 0.85 kcal/molRuscic W1RO
2.83344.1 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(718 K) = 3.7 ± 2 kcal/molWaage 1972, Doering 1981, Berson 1994, Isborn 2004, est unc
2.63356.1 CH3CH2CH2 (g) → CH3CH2CH3 (g) CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 9.70 ± 0.90 kcal/molRuscic G3X
2.43377.4 CH2CH2CH2 (g, singlet C2v TS EE) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 2.14 ± 1.2 (×1.795) kcal/molRuscic W1RO
2.23344.5 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 2.77 ± 0.85 (×2.65) kcal/molRuscic W1RO
1.83356.2 CH3CH2CH2 (g) → CH3CH2CH3 (g) CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 10.42 ± 0.90 (×1.215) kcal/molRuscic G4
1.63375.5 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 578 ± 420 cm-1Ruscic W1RO
1.63347.9 CH2(CH2CH2) (g) → CH2CH2CH2 (g, singlet C2v TS EE) ΔrH°(718 K) = 62.8 ± 4 kcal/molRabinovitch 1958, est unc
1.43375.2 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 539 ± 450 cm-1Ruscic G4
1.23350.4 CH3CHCH2 (g) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 77.38 ± 1.50 kcal/molRuscic W1RO
1.23376.5 CH2(CH2CH2) (g) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 68.25 ± 1.50 kcal/molRuscic W1RO
1.23356.3 CH3CH2CH2 (g) → CH3CH2CH3 (g) CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 8.03 ± 1.00 (×1.325) kcal/molRuscic CBS-n
1.23349.4 CH2(CH2CH2) (g) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 68.88 ± 1.50 kcal/molRuscic W1RO
1.23375.1 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 576 ± 490 cm-1Ruscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2CH2CH2 (g, singlet C2v TS EE)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 1,3-PropanediylCH2CH2CH2 (g, singlet TS)[CH2]C[CH2]337.7323.0± 2.2kJ/mol42.0797 ±
0.0024
32458-33-6*2
50.8 1,3-PropanediylCH2CH2CH2 (g, singlet Cs TS)[CH2]C[CH2]358.7343.8± 1.4kJ/mol42.0797 ±
0.0024
32458-33-6*22
36.3 PropylideneCH3CH2CH (g, singlet TS anti)CC[CH]355.7340.4± 2.0kJ/mol42.0797 ±
0.0024
6700-78-3*21
36.3 PropylideneCH3CH2CH (g, singlet TS)CC[CH]355.7340.8± 2.0kJ/mol42.0797 ±
0.0024
6700-78-3*2
26.4 PropylideneCH3CH2CH (g, singlet TS syn)CC[CH]362.8347.5± 2.8kJ/mol42.0797 ±
0.0024
6700-78-3*22
13.5 1,3-PropanediylCH2CH2CH2 (g)[CH2]C[CH2]319.3307.9± 1.3kJ/mol42.0797 ±
0.0024
32458-33-6*0
13.5 1,3-PropanediylCH2CH2CH2 (g, triplet)[CH2]C[CH2]319.3307.9± 1.3kJ/mol42.0797 ±
0.0024
32458-33-6*1
13.5 1,3-PropanediylCH2CH2CH2 (g, triplet Cs)[CH2]C[CH2]319.3307.1± 1.3kJ/mol42.0797 ±
0.0024
32458-33-6*11
13.2 n-PropylCH3CH2CH2 (g)CC[CH2]118.47101.07± 0.39kJ/mol43.0877 ±
0.0024
2143-61-5*0
9.2 1,3-PropanediylCH2CH2CH2 (g, triplet C2)[CH2]C[CH2]320.3308.5± 1.5kJ/mol42.0797 ±
0.0024
32458-33-6*12

Most Influential reactions involving CH2CH2CH2 (g, singlet C2v TS EE)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0003343.1 CH2CH2CH2 (g, singlet TS) → CH2CH2CH2 (g, singlet C2v TS EE) ΔrH°(0 K) = 0 ± 0 cm-1Ruscic W1RO, Ruscic G4, Ruscic CBS-n
0.2453344.3 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 5.43 ± 0.90 kcal/molRuscic G4
0.2453344.2 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 5.29 ± 0.90 kcal/molRuscic G3X
0.1983344.4 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 5.01 ± 1.0 kcal/molRuscic CBS-n
0.1833377.2 CH2CH2CH2 (g, singlet C2v TS EE) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 4.59 ± 1.3 kcal/molRuscic G4
0.1573377.1 CH2CH2CH2 (g, singlet C2v TS EE) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 4.19 ± 1.4 kcal/molRuscic G3X
0.1203377.3 CH2CH2CH2 (g, singlet C2v TS EE) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 5.15 ± 1.6 kcal/molRuscic CBS-n
0.0663377.4 CH2CH2CH2 (g, singlet C2v TS EE) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 2.14 ± 1.2 (×1.795) kcal/molRuscic W1RO
0.0493344.1 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(718 K) = 3.7 ± 2 kcal/molWaage 1972, Doering 1981, Berson 1994, Isborn 2004, est unc
0.0393344.5 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(0 K) = 2.77 ± 0.85 (×2.65) kcal/molRuscic W1RO
0.0163347.9 CH2(CH2CH2) (g) → CH2CH2CH2 (g, singlet C2v TS EE) ΔrH°(718 K) = 62.8 ± 4 kcal/molRabinovitch 1958, est unc
0.0123344.6 CH2CH2CH2 (g, singlet C2v TS EE) → CH2CH2CH2 (g, singlet Cs TS) ΔrH°(718 K) = 1.3 ± 4 kcal/molRabinovitch 1958, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.