Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Propylidene

Formula: CH3CH2CH (g, triplet gauche)
CAS RN: 6700-78-3
ATcT ID: 6700-78-3*11
SMILES: CC[CH]
InChI: InChI=1S/C3H6/c1-3-2/h1H,3H2,2H3
InChIKey: OSFBJERFMQCEQY-UHFFFAOYSA-N
Hills Formula: C3H6

2D Image:

CC[CH]
Aliases: CH3CH2CH; Propylidene; Ethylcarbene; CHCH2CH3
Relative Molecular Mass: 42.0797 ± 0.0024

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
349.52335.83± 0.92kJ/mol

3D Image of CH3CH2CH (g, triplet gauche)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3CH2CH (g, triplet gauche)

The 20 contributors listed below account only for 73.2% of the provenance of ΔfH° of CH3CH2CH (g, triplet gauche).
A total of 55 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
20.33365.1 CH4 (g) → CH3CH2CH (g, triplet gauche) + 3 H2 (g) ΔrH°(0 K) = 549.19 ± 2.0 kJ/molKlippenstein 2017
14.43369.6 CH3CH2CH (g, triplet gauche) CH3CH3 (g) → CH3CH (g, triplet) CH3CH2CH3 (g) ΔrH°(0 K) = -2.89 ± 2.0 kJ/molKlippenstein 2017
4.53369.5 CH3CH2CH (g, triplet gauche) CH3CH3 (g) → CH3CH (g, triplet) CH3CH2CH3 (g) ΔrH°(0 K) = -0.71 ± 0.85 kcal/molRuscic W1RO
4.03369.1 CH3CH2CH (g, triplet gauche) CH3CH3 (g) → CH3CH (g, triplet) CH3CH2CH3 (g) ΔrH°(0 K) = -0.71 ± 0.90 kcal/molRuscic G3X
4.03369.2 CH3CH2CH (g, triplet gauche) CH3CH3 (g) → CH3CH (g, triplet) CH3CH2CH3 (g) ΔrH°(0 K) = -0.39 ± 0.90 kcal/molRuscic G4
4.03369.4 CH3CH2CH (g, triplet gauche) CH3CH3 (g) → CH3CH (g, triplet) CH3CH2CH3 (g) ΔrH°(0 K) = -0.61 ± 0.90 kcal/molRuscic CBS-n
3.33369.3 CH3CH2CH (g, triplet gauche) CH3CH3 (g) → CH3CH (g, triplet) CH3CH2CH3 (g) ΔrH°(0 K) = -0.59 ± 1.0 kcal/molRuscic CBS-n
1.73456.5 CH2CH2CH (g, quartet) CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) CH3CH2CH2 (g) ΔrH°(0 K) = -0.71 ± 0.85 kcal/molRuscic W1RO
1.63366.5 CH3CH2CH (g, triplet gauche) → CH2CH2CH2 (g, triplet Cs) ΔrH°(0 K) = -7.30 ± 1.2 kcal/molRuscic W1RO
1.53456.2 CH2CH2CH (g, quartet) CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) CH3CH2CH2 (g) ΔrH°(0 K) = -1.77 ± 0.90 kcal/molRuscic G4
1.53456.4 CH2CH2CH (g, quartet) CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) CH3CH2CH2 (g) ΔrH°(0 K) = -0.61 ± 0.90 kcal/molRuscic CBS-n
1.53456.1 CH2CH2CH (g, quartet) CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) CH3CH2CH2 (g) ΔrH°(0 K) = -0.65 ± 0.90 kcal/molRuscic G3X
1.43368.5 CH3CH2CH (g, triplet gauche) → CH3CCH3 (g, triplet) ΔrH°(0 K) = -5.32 ± 1.2 kcal/molRuscic W1RO
1.33366.4 CH3CH2CH (g, triplet gauche) → CH2CH2CH2 (g, triplet Cs) ΔrH°(0 K) = -7.18 ± 1.3 kcal/molRuscic CBS-n
1.33366.2 CH3CH2CH (g, triplet gauche) → CH2CH2CH2 (g, triplet Cs) ΔrH°(0 K) = -7.12 ± 1.3 kcal/molRuscic G4
1.23456.3 CH2CH2CH (g, quartet) CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) CH3CH2CH2 (g) ΔrH°(0 K) = -0.65 ± 1.0 kcal/molRuscic CBS-n
1.23368.4 CH3CH2CH (g, triplet gauche) → CH3CCH3 (g, triplet) ΔrH°(0 K) = -5.48 ± 1.3 kcal/molRuscic CBS-n
1.23368.2 CH3CH2CH (g, triplet gauche) → CH3CCH3 (g, triplet) ΔrH°(0 K) = -5.25 ± 1.3 kcal/molRuscic G4
1.13366.1 CH3CH2CH (g, triplet gauche) → CH2CH2CH2 (g, triplet Cs) ΔrH°(0 K) = -7.19 ± 1.4 kcal/molRuscic G3X
1.13375.5 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 578 ± 420 cm-1Ruscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2CH (g, triplet gauche)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 PropylideneCH3CH2CH (g, triplet)CC[CH]349.52335.76± 0.92kJ/mol42.0797 ±
0.0024
6700-78-3*1
100.0 PropylideneCH3CH2CH (g)CC[CH]349.52335.83± 0.92kJ/mol42.0797 ±
0.0024
6700-78-3*0
47.5 PropylideneCH3CH2CH (g, triplet anti)CC[CH]349.7336.0± 2.0kJ/mol42.0797 ±
0.0024
6700-78-3*12
34.7 Propan-1-yl-3-ylideneCH2CH2CH (g, quartet)[CH2]C[CH]554.5545.8± 1.3kJ/mol41.0718 ±
0.0024
*50457-59-5*2
30.1 EthylideneCH3CH (g)[CH]C361.31354.32± 0.48kJ/mol28.0532 ±
0.0016
4218-50-2*0
30.1 EthylideneCH3CH (g, triplet)[CH]C361.31354.30± 0.48kJ/mol28.0532 ±
0.0016
4218-50-2*1
29.2 Propylidene anion[CH3CH2CH]- (g)CC[CH-]300.9286.7± 3.2kJ/mol42.0803 ±
0.0024
*121408-55-7*0
26.9 1-MethylethylideneCH3CCH3 (g, triplet)C[C]C326.9313.8± 1.2kJ/mol42.0797 ±
0.0024
40852-89-9*1
22.0 1,3-PropanediylCH2CH2CH2 (g, triplet Cs)[CH2]C[CH2]319.3307.1± 1.3kJ/mol42.0797 ±
0.0024
32458-33-6*11
22.0 1,3-PropanediylCH2CH2CH2 (g, triplet)[CH2]C[CH2]319.3307.9± 1.3kJ/mol42.0797 ±
0.0024
32458-33-6*1

Most Influential reactions involving CH3CH2CH (g, triplet gauche)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0003371.1 CH3CH2CH (g, triplet) → CH3CH2CH (g, triplet gauche) ΔrH°(0 K) = 0 ± 0 cm-1Ruscic W1RO, Ruscic G4, Ruscic CBS-n
0.3813363.5 [CH3CH2CH]- (g) → CH3CH2CH (g, triplet gauche) ΔrH°(0 K) = 0.498 ± 0.050 eVRuscic W1RO
0.2563363.2 [CH3CH2CH]- (g) → CH3CH2CH (g, triplet gauche) ΔrH°(0 K) = 0.530 ± 0.061 eVRuscic G4
0.2213372.5 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, triplet anti) ΔrH°(0 K) = 9 ± 300 cm-1Ruscic W1RO
0.2083365.1 CH4 (g) → CH3CH2CH (g, triplet gauche) + 3 H2 (g) ΔrH°(0 K) = 549.19 ± 2.0 kJ/molKlippenstein 2017
0.2073372.4 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, triplet anti) ΔrH°(0 K) = 55 ± 310 cm-1Ruscic CBS-n
0.2073372.2 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, triplet anti) ΔrH°(0 K) = 5 ± 310 cm-1Ruscic G4
0.2003372.1 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, triplet anti) ΔrH°(0 K) = 0 ± 315 cm-1Ruscic G3X
0.1983369.6 CH3CH2CH (g, triplet gauche) CH3CH3 (g) → CH3CH (g, triplet) CH3CH2CH3 (g) ΔrH°(0 K) = -2.89 ± 2.0 kJ/molKlippenstein 2017
0.1623372.3 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, triplet anti) ΔrH°(0 K) = 27 ± 350 cm-1Ruscic CBS-n
0.1613375.5 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 578 ± 420 cm-1Ruscic W1RO
0.1403375.2 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 539 ± 450 cm-1Ruscic G4
0.1323363.1 [CH3CH2CH]- (g) → CH3CH2CH (g, triplet gauche) ΔrH°(0 K) = 0.476 ± 0.085 eVRuscic G3X
0.1283456.5 CH2CH2CH (g, quartet) CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) CH3CH2CH2 (g) ΔrH°(0 K) = -0.71 ± 0.85 kcal/molRuscic W1RO
0.1183375.1 CH3CH2CH (g, triplet gauche) → CH3CH2CH (g, singlet TS anti) ΔrH°(0 K) = 576 ± 490 cm-1Ruscic G3X
0.1173363.4 [CH3CH2CH]- (g) → CH3CH2CH (g, triplet gauche) ΔrH°(0 K) = 0.495 ± 0.090 eVRuscic CBS-n
0.1143456.4 CH2CH2CH (g, quartet) CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) CH3CH2CH2 (g) ΔrH°(0 K) = -0.61 ± 0.90 kcal/molRuscic CBS-n
0.1143456.1 CH2CH2CH (g, quartet) CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) CH3CH2CH2 (g) ΔrH°(0 K) = -0.65 ± 0.90 kcal/molRuscic G3X
0.1143456.2 CH2CH2CH (g, quartet) CH3CH2CH3 (g) → CH3CH2CH (g, triplet gauche) CH3CH2CH2 (g) ΔrH°(0 K) = -1.77 ± 0.90 kcal/molRuscic G4
0.1123363.3 [CH3CH2CH]- (g) → CH3CH2CH (g, triplet gauche) ΔrH°(0 K) = 0.510 ± 0.092 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.