Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Iodomethane

Formula: CH3I (g)
CAS RN: 74-88-4
ATcT ID: 74-88-4*0
SMILES: CI
InChI: InChI=1S/CH3I/c1-2/h1H3
InChIKey: INQOMBQAUSQDDS-UHFFFAOYSA-N
Hills Formula: C1H3I1

2D Image:

CI
Aliases: CH3I; Iodomethane; Methyl iodide; Methyl monoiodide; Monoiodomethane; Carbon monoiodide; Monoiodocarbon; RCRA U138; UN 2644; Halon 10001
Relative Molecular Mass: 141.93899 ± 0.00083

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
24.5314.99± 0.16kJ/mol

3D Image of CH3I (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3I (g)

The 17 contributors listed below account for 90.0% of the provenance of ΔfH° of CH3I (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
39.66352.2 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.251 ± 0.0024 eVLee 2007
25.46352.1 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.248 ± 0.003 eVBodi 2009, Bodi 2023
3.56352.3 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.243 ± 0.008 eVLee 2007, Bodi 2009
3.16354.4 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(669 K) = -10.34 ± 0.09 (×2.181) kcal/molGoy 1965, 3rd Law
2.96354.2 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(630.5 K) = -10.48 ± 0.08 (×2.538) kcal/molGolden 1965, 3rd Law, Cox 1970
2.82376.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.56283.8 CI4 (g) + 3 CH4 (g) → 4 CH3I (g) ΔrH°(0 K) = -26.3 ± 2.5 kJ/molBross 2023
2.26364.5 CH3I (g) CBr4 (g) → 4 CH3Br (g) CI4 (g) ΔrH°(0 K) = -0.5 ± 2.5 kJ/molBross 2023
2.06352.5 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.24 ± 0.01 (×1.044) eVMintz 1976
1.16365.1 CH3I (l) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) I2 (cr,l) ΔrH°(298.15 K) = -1617.2 ± 0.6 (×4.757) kJ/molCarson 1993, Carson 1993
0.76367.1 CH3I (l) H2 (g) → 2 CH4 (g) I2 (cr,l) ΔrH°(298.15 K) = -30.0 ± 0.8 kcal/molCarson 1961, note unc, Cox 1970
0.66430.1 CH3I (g) → CH2I2 (g) CH4 (g) ΔrH°(0 K) = 4.0 ± 2.5 (×1.354) kJ/molBross 2023
0.66352.4 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.269 ± 0.003 (×6.304) eVSong 2001
0.66354.5 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrH°(669 K) = -12.65 ± 0.39 (×1.139) kcal/molGoy 1965, 2nd Law
0.66282.6 CI4 (g) → C (g) + 4 I (g) ΔrH°(0 K) = 816.4 ± 2.5 kJ/molBross 2023
0.56288.5 CI4 (g) + 4 H2 (g) → CH4 (g) + 4 HI (g) ΔrH°(0 K) = -275.1 ± 2.5 kJ/molBross 2023
0.56352.7 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.23 ± 0.02 (×1.022) eVTraeger 1981, AE corr, note unc2
39.66352.2 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.251 ± 0.0024 eVLee 2007
25.46352.1 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.248 ± 0.003 eVBodi 2009, Bodi 2023
3.56352.3 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.243 ± 0.008 eVLee 2007, Bodi 2009
3.16354.4 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(669 K) = -10.34 ± 0.09 (×2.181) kcal/molGoy 1965, 3rd Law
2.96354.2 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(630.5 K) = -10.48 ± 0.08 (×2.538) kcal/molGolden 1965, 3rd Law, Cox 1970
2.82376.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.56283.8 CI4 (g) + 3 CH4 (g) → 4 CH3I (g) ΔrH°(0 K) = -26.3 ± 2.5 kJ/molBross 2023
2.26364.5 CH3I (g) CBr4 (g) → 4 CH3Br (g) CI4 (g) ΔrH°(0 K) = -0.5 ± 2.5 kJ/molBross 2023
2.06352.5 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.24 ± 0.01 (×1.044) eVMintz 1976
1.16365.1 CH3I (l) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) I2 (cr,l) ΔrH°(298.15 K) = -1617.2 ± 0.6 (×4.757) kJ/molCarson 1993, Carson 1993
0.76367.1 CH3I (l) H2 (g) → 2 CH4 (g) I2 (cr,l) ΔrH°(298.15 K) = -30.0 ± 0.8 kcal/molCarson 1961, note unc, Cox 1970
0.66430.1 CH3I (g) → CH2I2 (g) CH4 (g) ΔrH°(0 K) = 4.0 ± 2.5 (×1.354) kJ/molBross 2023
0.66352.4 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.269 ± 0.003 (×6.304) eVSong 2001
0.66354.5 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrH°(669 K) = -12.65 ± 0.39 (×1.139) kcal/molGoy 1965, 2nd Law
0.66282.6 CI4 (g) → C (g) + 4 I (g) ΔrH°(0 K) = 816.4 ± 2.5 kJ/molBross 2023
0.56288.5 CI4 (g) + 4 H2 (g) → CH4 (g) + 4 HI (g) ΔrH°(0 K) = -275.1 ± 2.5 kJ/molBross 2023
0.56352.7 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.23 ± 0.02 (×1.022) eVTraeger 1981, AE corr, note unc2

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3I (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.7 Iodomethane cation[CH3I]+ (g)C[I+]944.82935.42± 0.16kJ/mol141.93844 ±
0.00083
12538-72-6*0
99.7 Iodomethane cation[CH3I]+ (g)C[I+]944.82935.42± 0.16kJ/mol141.93844 ±
0.00083
12538-72-6*0
88.0 IodomethaneCH3I (l)CI-12.15± 0.18kJ/mol141.93899 ±
0.00083
74-88-4*590
88.0 IodomethaneCH3I (l)CI-12.15± 0.18kJ/mol141.93899 ±
0.00083
74-88-4*590
27.1 Methylium[CH3]+ (g)[CH3+]1099.3551095.412± 0.045kJ/mol15.03397 ±
0.00083
14531-53-4*0
27.1 Methylium[CH3]+ (g)[CH3+]1099.3551095.412± 0.045kJ/mol15.03397 ±
0.00083
14531-53-4*0
26.4 MethaneCH4 (g)C-66.540-74.510± 0.043kJ/mol16.04246 ±
0.00085
74-82-8*0
26.4 MethaneCH4 (g)C-66.540-74.510± 0.043kJ/mol16.04246 ±
0.00085
74-82-8*0
24.0 MethylCH3 (g)[CH3]149.883146.482± 0.049kJ/mol15.03452 ±
0.00083
2229-07-4*0
24.0 MethylCH3 (g)[CH3]149.883146.482± 0.049kJ/mol15.03452 ±
0.00083
2229-07-4*0
20.3 Methane cation[CH4]+ (g)[CH4+]1150.6891144.306± 0.057kJ/mol16.04191 ±
0.00085
20741-88-2*0
20.3 Methane cation[CH4]+ (g)[CH4+]1150.6891144.306± 0.057kJ/mol16.04191 ±
0.00085
20741-88-2*0
19.4 TetraiodomethaneCI4 (g)C(I)(I)(I)I323.7318.6± 1.1kJ/mol519.62858 ±
0.00081
507-25-5*0
19.4 TetraiodomethaneCI4 (g)C(I)(I)(I)I323.7318.6± 1.1kJ/mol519.62858 ±
0.00081
507-25-5*0
18.7 MethaneCH4 (aq, undissoc)C-87.692± 0.062kJ/mol16.04246 ±
0.00085
74-82-8*1000
18.7 MethaneCH4 (aq, undissoc)C-87.692± 0.062kJ/mol16.04246 ±
0.00085
74-82-8*1000
12.5 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.669± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
12.5 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.669± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
12.3 WaterH2O (cr,l)O-286.273-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
12.3 WaterH2O (cr,l)O-286.273-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500

Most Influential reactions involving CH3I (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9046351.3 CH3I (g) → [CH3I]+ (g) ΔrH°(0 K) = 76930.0 ± 1.0 cm-1Baig 1981
0.5946761.1 HCCI (g) CH3Br (g) → HCCBr (g) CH3I (g) ΔrH°(0 K) = 8.4 ± 2.5 kJ/molBross 2023
0.4586366.3 CH3I (l) → CH3I (g) ΔrG°(299.19 K) = 1.484 ± 0.125 kJ/molBoublik 1972, Fogg 1953, Zaalishvili 1962, Raetzsch 1965, ThermoData 2004
0.4316352.2 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.251 ± 0.0024 eVLee 2007
0.4026425.1 CHI3 (g) CH3I (g) → CI4 (g) CH4 (g) ΔrH°(0 K) = 15.4 ± 2.5 kJ/molBross 2023
0.2796366.5 CH3I (l) → CH3I (g) ΔrG°(287.05 K) = 2.578 ± 0.160 kJ/molBoublik 1972, Fogg 1953, Zaalishvili 1962, Raetzsch 1965, ThermoData 2004
0.2766352.1 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.248 ± 0.003 eVBodi 2009, Bodi 2023
0.2476366.7 CH3I (l) → CH3I (g) ΔrG°(285.78 K) = 2.69 ± 0.17 kJ/molThompson 1936, Fogg 1953, Zaalishvili 1962, Raetzsch 1965, ThermoData 2004
0.2216364.5 CH3I (g) CBr4 (g) → 4 CH3Br (g) CI4 (g) ΔrH°(0 K) = -0.5 ± 2.5 kJ/molBross 2023
0.1886283.8 CI4 (g) + 3 CH4 (g) → 4 CH3I (g) ΔrH°(0 K) = -26.3 ± 2.5 kJ/molBross 2023
0.1722942.2 ICN (g) CH3Br (g) → BrCN (g) CH3I (g) ΔrH°(0 K) = 2.43 ± 1.0 kcal/molRuscic unpub
0.1422942.3 ICN (g) CH3Br (g) → BrCN (g) CH3I (g) ΔrH°(0 K) = 2.43 ± 1.1 kcal/molRuscic unpub
0.1192942.1 ICN (g) CH3Br (g) → BrCN (g) CH3I (g) ΔrH°(0 K) = 2.40 ± 1.2 kcal/molRuscic unpub
0.1176703.1 CH2CHI (g) CH3Br (g) → CH2CHBr (g) CH3I (g) ΔrH°(0 K) = -5.8 ± 2.5 kJ/molBross 2023
0.0606430.1 CH3I (g) → CH2I2 (g) CH4 (g) ΔrH°(0 K) = 4.0 ± 2.5 (×1.354) kJ/molBross 2023
0.0566351.1 CH3I (g) → [CH3I]+ (g) ΔrH°(0 K) = 76932 ± 4 cm-1Urban 2002
0.0386352.3 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.243 ± 0.008 eVLee 2007, Bodi 2009
0.0366354.4 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(669 K) = -10.34 ± 0.09 (×2.181) kcal/molGoy 1965, 3rd Law
0.0366351.2 CH3I (g) → [CH3I]+ (g) ΔrH°(0 K) = 76934 ± 5 cm-1Strobel 1994, Strobel 1993
0.0336354.2 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(630.5 K) = -10.48 ± 0.08 (×2.538) kcal/molGolden 1965, 3rd Law, Cox 1970
0.9046351.3 CH3I (g) → [CH3I]+ (g) ΔrH°(0 K) = 76930.0 ± 1.0 cm-1Baig 1981
0.5946761.1 HCCI (g) CH3Br (g) → HCCBr (g) CH3I (g) ΔrH°(0 K) = 8.4 ± 2.5 kJ/molBross 2023
0.4586366.3 CH3I (l) → CH3I (g) ΔrG°(299.19 K) = 1.484 ± 0.125 kJ/molBoublik 1972, Fogg 1953, Zaalishvili 1962, Raetzsch 1965, ThermoData 2004
0.4316352.2 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.251 ± 0.0024 eVLee 2007
0.4026425.1 CHI3 (g) CH3I (g) → CI4 (g) CH4 (g) ΔrH°(0 K) = 15.4 ± 2.5 kJ/molBross 2023
0.2796366.5 CH3I (l) → CH3I (g) ΔrG°(287.05 K) = 2.578 ± 0.160 kJ/molBoublik 1972, Fogg 1953, Zaalishvili 1962, Raetzsch 1965, ThermoData 2004
0.2766352.1 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.248 ± 0.003 eVBodi 2009, Bodi 2023
0.2476366.7 CH3I (l) → CH3I (g) ΔrG°(285.78 K) = 2.69 ± 0.17 kJ/molThompson 1936, Fogg 1953, Zaalishvili 1962, Raetzsch 1965, ThermoData 2004
0.2216364.5 CH3I (g) CBr4 (g) → 4 CH3Br (g) CI4 (g) ΔrH°(0 K) = -0.5 ± 2.5 kJ/molBross 2023
0.1886283.8 CI4 (g) + 3 CH4 (g) → 4 CH3I (g) ΔrH°(0 K) = -26.3 ± 2.5 kJ/molBross 2023
0.1722942.2 ICN (g) CH3Br (g) → BrCN (g) CH3I (g) ΔrH°(0 K) = 2.43 ± 1.0 kcal/molRuscic unpub
0.1422942.3 ICN (g) CH3Br (g) → BrCN (g) CH3I (g) ΔrH°(0 K) = 2.43 ± 1.1 kcal/molRuscic unpub
0.1192942.1 ICN (g) CH3Br (g) → BrCN (g) CH3I (g) ΔrH°(0 K) = 2.40 ± 1.2 kcal/molRuscic unpub
0.1176703.1 CH2CHI (g) CH3Br (g) → CH2CHBr (g) CH3I (g) ΔrH°(0 K) = -5.8 ± 2.5 kJ/molBross 2023
0.0606430.1 CH3I (g) → CH2I2 (g) CH4 (g) ΔrH°(0 K) = 4.0 ± 2.5 (×1.354) kJ/molBross 2023
0.0566351.1 CH3I (g) → [CH3I]+ (g) ΔrH°(0 K) = 76932 ± 4 cm-1Urban 2002
0.0386352.3 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.243 ± 0.008 eVLee 2007, Bodi 2009
0.0366354.4 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(669 K) = -10.34 ± 0.09 (×2.181) kcal/molGoy 1965, 3rd Law
0.0366351.2 CH3I (g) → [CH3I]+ (g) ΔrH°(0 K) = 76934 ± 5 cm-1Strobel 1994, Strobel 1993
0.0336354.2 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(630.5 K) = -10.48 ± 0.08 (×2.538) kcal/molGolden 1965, 3rd Law, Cox 1970


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.