Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Diiodomethane

Formula: CH2I2 (g)
CAS RN: 75-11-6
ATcT ID: 75-11-6*0
SMILES: C(I)I
InChI: InChI=1S/CH2I2/c2-1-3/h1H2
InChIKey: NZZFYRREKKOMAT-UHFFFAOYSA-N
Hills Formula: C1H2I2

2D Image:

C(I)I
Aliases: CH2I2; Diiodomethane; Methylene iodide; Methylene diiodide; Methane diiodide; Carbon diiodide; Diiodocarbon; Mi-gee
Relative Molecular Mass: 267.83552 ± 0.00081

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
122.96113.52± 0.78kJ/mol

3D Image of CH2I2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH2I2 (g)

The 4 contributors listed below account for 94.1% of the provenance of ΔfH° of CH2I2 (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
43.06432.1 CH2I2 (l) + 3/2 O2 (g) → CO2 (g) H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -747.8 ± 0.6 kJ/molCarson 1993, Carson 1993
41.16433.1 CH2I2 (l) → CH2I2 (g) ΔrH°(298.15 K) = 45.6 ± 0.6 kJ/molCarson 1994, Carson 1994
5.16430.1 CH3I (g) → CH2I2 (g) CH4 (g) ΔrH°(0 K) = 4.0 ± 2.5 (×1.354) kJ/molBross 2023
4.86429.1 CH2I2 (g) → C (g) + 2 H (g) + 2 I (g) ΔrH°(0 K) = 1238.3 ± 2.5 (×1.414) kJ/molBross 2023
43.06432.1 CH2I2 (l) + 3/2 O2 (g) → CO2 (g) H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -747.8 ± 0.6 kJ/molCarson 1993, Carson 1993
41.16433.1 CH2I2 (l) → CH2I2 (g) ΔrH°(298.15 K) = 45.6 ± 0.6 kJ/molCarson 1994, Carson 1994
5.16430.1 CH3I (g) → CH2I2 (g) CH4 (g) ΔrH°(0 K) = 4.0 ± 2.5 (×1.354) kJ/molBross 2023
4.86429.1 CH2I2 (g) → C (g) + 2 H (g) + 2 I (g) ΔrH°(0 K) = 1238.3 ± 2.5 (×1.414) kJ/molBross 2023

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2I2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
68.2 DiiodomethaneCH2I2 (l)C(I)I68.21± 0.58kJ/mol267.83552 ±
0.00081
75-11-6*590
68.2 DiiodomethaneCH2I2 (l)C(I)I68.21± 0.58kJ/mol267.83552 ±
0.00081
75-11-6*590
3.6 TetraiodomethaneCI4 (g)C(I)(I)(I)I323.7318.6± 1.1kJ/mol519.62858 ±
0.00081
507-25-5*0
3.6 TetraiodomethaneCI4 (g)C(I)(I)(I)I323.7318.6± 1.1kJ/mol519.62858 ±
0.00081
507-25-5*0
3.1 IodomethaneCH3I (g)CI24.5314.99± 0.16kJ/mol141.93899 ±
0.00083
74-88-4*0
3.1 IodomethaneCH3I (g)CI24.5314.99± 0.16kJ/mol141.93899 ±
0.00083
74-88-4*0
3.1 Iodomethane cation[CH3I]+ (g)C[I+]944.82935.42± 0.16kJ/mol141.93844 ±
0.00083
12538-72-6*0
3.1 Iodomethane cation[CH3I]+ (g)C[I+]944.82935.42± 0.16kJ/mol141.93844 ±
0.00083
12538-72-6*0
2.8 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.669± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
2.8 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.669± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
2.7 IodomethaneCH3I (l)CI-12.15± 0.18kJ/mol141.93899 ±
0.00083
74-88-4*590
2.7 IodomethaneCH3I (l)CI-12.15± 0.18kJ/mol141.93899 ±
0.00083
74-88-4*590
2.5 Oxonium[H3O]+ (aq)[OH3+]-285.801± 0.022kJ/mol19.02267 ±
0.00037
13968-08-6*800
2.5 WaterH2O (l)O-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
2.5 WaterH2O (cr,l)O-286.273-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
2.5 WaterH2O (cr,l)O-286.273-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
2.5 WaterH2O (l, eq.press.)O-285.802± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
2.5 Oxonium[H3O]+ (aq)[OH3+]-285.801± 0.022kJ/mol19.02267 ±
0.00037
13968-08-6*800
2.5 WaterH2O (l)O-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
2.5 WaterH2O (l, eq.press.)O-285.802± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589

Most Influential reactions involving CH2I2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9066433.1 CH2I2 (l) → CH2I2 (g) ΔrH°(298.15 K) = 45.6 ± 0.6 kJ/molCarson 1994, Carson 1994
0.0676431.1 CH2I2 (g) → CI4 (g) CH4 (g) ΔrH°(0 K) = 18.3 ± 2.5 (×2.828) kJ/molBross 2023
0.0606430.1 CH3I (g) → CH2I2 (g) CH4 (g) ΔrH°(0 K) = 4.0 ± 2.5 (×1.354) kJ/molBross 2023
0.0486429.1 CH2I2 (g) → C (g) + 2 H (g) + 2 I (g) ΔrH°(0 K) = 1238.3 ± 2.5 (×1.414) kJ/molBross 2023
0.0206433.2 CH2I2 (l) → CH2I2 (g) ΔrH°(298.15 K) = 46.1 ± 4.0 kJ/molNBS Tables 1989
0.9066433.1 CH2I2 (l) → CH2I2 (g) ΔrH°(298.15 K) = 45.6 ± 0.6 kJ/molCarson 1994, Carson 1994
0.0676431.1 CH2I2 (g) → CI4 (g) CH4 (g) ΔrH°(0 K) = 18.3 ± 2.5 (×2.828) kJ/molBross 2023
0.0606430.1 CH3I (g) → CH2I2 (g) CH4 (g) ΔrH°(0 K) = 4.0 ± 2.5 (×1.354) kJ/molBross 2023
0.0486429.1 CH2I2 (g) → C (g) + 2 H (g) + 2 I (g) ΔrH°(0 K) = 1238.3 ± 2.5 (×1.414) kJ/molBross 2023
0.0206433.2 CH2I2 (l) → CH2I2 (g) ΔrH°(298.15 K) = 46.1 ± 4.0 kJ/molNBS Tables 1989


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.