Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Glycine

Formula: NH2CH2C(O)OH (cr, alpha)
CAS RN: 56-40-6
ATcT ID: 56-40-6*511
SMILES: NCC(=O)O
InChI: InChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5)
InChIKey: DHMQDGOQFOQNFH-UHFFFAOYSA-N
Hills Formula: C2H5N1O2

2D Image:

NCC(=O)O
Aliases: NH2CH2C(O)OH; Glycine; 2-Aminoacetic acid; Aminoacetic acid; Aminoethanoic acid; alpha-Glycine; beta-Glycine; gamma-Glycine; Aminomethanecarboxylic acid; Aciport; Glicoamin; Glycocoll; Glycolixir; Glycosthene; Padil; Amitone; Athenon; Gly; Gyn-hydralin; Corilin; NSC 25936
Relative Molecular Mass: 75.0666 ± 0.0017

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-508.27-528.37± 0.20kJ/mol

Top contributors to the provenance of ΔfH° of NH2CH2C(O)OH (cr, alpha)

The 5 contributors listed below account for 90.5% of the provenance of ΔfH° of NH2CH2C(O)OH (cr, alpha).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
66.27682.1 NH2CH2C(O)OH (cr, alpha) + 9/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1945.95 ± 0.44 kJ/molNgauv 1977
18.37682.3 NH2CH2C(O)OH (cr, alpha) + 9/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -465.14 ± 0.20 kcal/molHuffman 1937
3.07682.2 NH2CH2C(O)OH (cr, alpha) + 9/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1948.2 ± 1.0 (×2.044) kJ/molVasilev 1991, Vasilev 1991a, as quoted by NIST WebBook
2.0125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.92376.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of NH2CH2C(O)OH (cr, alpha)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 GlycineNH2CH2C(O)OH (aq, undissoc)NCC(=O)O-514.22± 0.20kJ/mol75.0666 ±
0.0017
56-40-6*1000
97.9 Glycinate[NH2CH2C(O)O]- (aq)NCC(=O)[O-]-470.09± 0.21kJ/mol74.0592 ±
0.0017
23297-34-9*800
97.9 GlycineNH2CH2C(O)OH (aq)NCC(=O)O-470.09± 0.21kJ/mol75.0666 ±
0.0017
56-40-6*800
97.9 GlycineNH2CH2C(O)OH (aq, 100000 H2O)NCC(=O)O-470.09± 0.21kJ/mol75.0666 ±
0.0017
56-40-6*861
96.1 GlycineNH2CH2C(O)OH (aq, 300 H2O)NCC(=O)O-470.16± 0.21kJ/mol75.0666 ±
0.0017
56-40-6*831
96.1 GlycineNH2CH2C(O)OH (aq, 100 H2O)NCC(=O)O-470.30± 0.21kJ/mol75.0666 ±
0.0017
56-40-6*828
96.1 GlycineNH2CH2C(O)OH (aq, 75 H2O)NCC(=O)O-470.37± 0.21kJ/mol75.0666 ±
0.0017
56-40-6*825
96.1 GlycineNH2CH2C(O)OH (aq, 30 H2O)NCC(=O)O-470.67± 0.21kJ/mol75.0666 ±
0.0017
56-40-6*820
96.1 GlycineNH2CH2C(O)OH (aq, 25 H2O)NCC(=O)O-470.76± 0.21kJ/mol75.0666 ±
0.0017
56-40-6*819
96.1 GlycineNH2CH2C(O)OH (aq, 1000 H2O)NCC(=O)O-470.11± 0.21kJ/mol75.0666 ±
0.0017
56-40-6*839

Most Influential reactions involving NH2CH2C(O)OH (cr, alpha)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0007685.1 NH2CH2C(O)OH (cr, beta) → NH2CH2C(O)OH (cr, alpha) ΔrH°(298.15 K) = -0.325 ± 0.083 kJ/molPerlovich 2001, Drebushchak 2003
1.0007684.1 NH2CH2C(O)OH (cr, gamma) → NH2CH2C(O)OH (cr, alpha) ΔrH°(298.15 K) = 0.268 ± 0.105 kJ/molPerlovich 2001, Drebushchak 2003
0.7287682.1 NH2CH2C(O)OH (cr, alpha) + 9/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1945.95 ± 0.44 kJ/molNgauv 1977
0.6587686.1 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc) ΔrG°(298.15 K) = -2.21131 ± 0.006 kJ/molRowland 2018
0.2457683.1 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (g) ΔrH°(413.35 K) = 132.3 ± 1.1 kJ/molNgauv 1977
0.2377686.4 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc) ΔrH°(298.15 K) = 14.16 ± 0.01 kJ/molSpink 1975, Miller 1990
0.2017682.3 NH2CH2C(O)OH (cr, alpha) + 9/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -465.14 ± 0.20 kcal/molHuffman 1937
0.0917683.2 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (g) ΔrH°(425.45 K) = 131.8 ± 1.8 kJ/molNgauv 1977
0.0597686.10 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc) ΔrH°(298.15 K) = 14.17 ± 0.02 kJ/molQiu 2009
0.0407683.4 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (g) ΔrH°(418.74 K) = 31.18 ± 0.49 (×1.325) kcal/molTakagi 1959
0.0347683.5 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (g) ΔrG°(418.74 K) = 10.52 ± 0.7 kcal/molTakagi 1959, est unc
0.0337682.2 NH2CH2C(O)OH (cr, alpha) + 9/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1948.2 ± 1.0 (×2.044) kJ/molVasilev 1991, Vasilev 1991a, as quoted by NIST WebBook
0.0267683.3 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (g) ΔrH°(418.93 K) = 136.5 ± 2 (×1.682) kJ/molde Kruif 1979, Lebedev 1981
0.0147686.3 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc) ΔrG°(298.15 K) = -2.22 ± 0.04 kJ/molMiller 1990
0.0117683.7 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (g) ΔrG°(461.75 K) = 8.1 ± 1.2 kcal/molClyde 1964, Svec 1965
0.0097686.8 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc) ΔrH°(298.15 K) = 14.17 ± 0.05 kJ/molKorolev 2007, Korolev 2007a
0.0087683.8 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (g) ΔrH°(421 K) = 131 ± 6 kJ/molBadelin 2007, note unc
0.0067686.7 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc) ΔrH°(298.15 K) = 14.20 ± 0.06 kJ/molPalecz 1998, Palecz 1990
0.0067686.15 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc) ΔrH°(298.15 K) = 14.12 ± 0.06 kJ/molKelley 1978
0.0037686.13 NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc) ΔrH°(298.15 K) = 3.376 ± 0.020 kcal/molZittle 1935, Kresheck 1964, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.