Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].
|
Glycine |
Formula: NH2CH2C(O)OH (aq, undissoc) |
CAS RN: 56-40-6 |
ATcT ID: 56-40-6*1000 |
SMILES: NCC(=O)O |
InChI: InChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5) |
InChIKey: DHMQDGOQFOQNFH-UHFFFAOYSA-N |
Hills Formula: C2H5N1O2 |
2D Image: |
|
Aliases: NH2CH2C(O)OH; Glycine; 2-Aminoacetic acid; Aminoacetic acid; Aminoethanoic acid; alpha-Glycine; beta-Glycine; gamma-Glycine; Aminomethanecarboxylic acid; Aciport; Glicoamin; Glycocoll; Glycolixir; Glycosthene; Padil; Amitone; Athenon; Gly; Gyn-hydralin; Corilin; NSC 25936 |
Relative Molecular Mass: 75.0666 ± 0.0017 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
| -514.22 | ± 0.20 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of NH2CH2C(O)OH (aq, undissoc)The 5 contributors listed below account for 90.5% of the provenance of ΔfH° of NH2CH2C(O)OH (aq, undissoc).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 66.1 | 7682.1 | 2 NH2CH2C(O)OH (cr, alpha) + 9/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) + N2 (g)  | ΔrH°(298.15 K) = -1945.95 ± 0.44 kJ/mol | Ngauv 1977 | 18.2 | 7682.3 | 2 NH2CH2C(O)OH (cr, alpha) + 9/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) + N2 (g)  | ΔrH°(298.15 K) = -465.14 ± 0.20 kcal/mol | Huffman 1937 | 3.0 | 7682.2 | 2 NH2CH2C(O)OH (cr, alpha) + 9/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) + N2 (g)  | ΔrH°(298.15 K) = -1948.2 ± 1.0 (×2.044) kJ/mol | Vasilev 1991, Vasilev 1991a, as quoted by NIST WebBook | 2.0 | 125.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 0.9 | 2376.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of NH2CH2C(O)OH (aq, undissoc) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Glycine | NH2CH2C(O)OH (cr, alpha) | | -508.27 | -528.37 | ± 0.20 | kJ/mol | 75.0666 ± 0.0017 | 56-40-6*511 | 98.0 | Glycinate | [NH2CH2C(O)O]- (aq) | | | -470.09 | ± 0.21 | kJ/mol | 74.0592 ± 0.0017 | 23297-34-9*800 | 98.0 | Glycine | NH2CH2C(O)OH (aq) | | | -470.09 | ± 0.21 | kJ/mol | 75.0666 ± 0.0017 | 56-40-6*800 | 98.0 | Glycine | NH2CH2C(O)OH (aq, 100000 H2O) | | | -470.09 | ± 0.21 | kJ/mol | 75.0666 ± 0.0017 | 56-40-6*861 | 96.1 | Glycine | NH2CH2C(O)OH (aq, 300 H2O) | | | -470.16 | ± 0.21 | kJ/mol | 75.0666 ± 0.0017 | 56-40-6*831 | 96.1 | Glycine | NH2CH2C(O)OH (aq, 100 H2O) | | | -470.30 | ± 0.21 | kJ/mol | 75.0666 ± 0.0017 | 56-40-6*828 | 96.1 | Glycine | NH2CH2C(O)OH (aq, 75 H2O) | | | -470.37 | ± 0.21 | kJ/mol | 75.0666 ± 0.0017 | 56-40-6*825 | 96.1 | Glycine | NH2CH2C(O)OH (aq, 30 H2O) | | | -470.67 | ± 0.21 | kJ/mol | 75.0666 ± 0.0017 | 56-40-6*820 | 96.1 | Glycine | NH2CH2C(O)OH (aq, 25 H2O) | | | -470.76 | ± 0.21 | kJ/mol | 75.0666 ± 0.0017 | 56-40-6*819 | 96.1 | Glycine | NH2CH2C(O)OH (aq, 700 H2O) | | | -470.12 | ± 0.21 | kJ/mol | 75.0666 ± 0.0017 | 56-40-6*835 |
|
Most Influential reactions involving NH2CH2C(O)OH (aq, undissoc)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.658 | 7686.1 | NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc)  | ΔrG°(298.15 K) = -2.21131 ± 0.006 kJ/mol | Rowland 2018 | 0.636 | 7694.1 | NH2CH2C(O)OH (aq, undissoc) → [NH2CH2C(O)O]- (aq) + H+ (aq)  | ΔrG°(298.15 K) = 55.78 ± 0.050 kJ/mol | Hamborg 2007, est unc | 0.449 | 7722.1 | [NH3CH2C(O)OH]+ (aq) → NH2CH2C(O)OH (aq, undissoc) + H+ (aq)  | ΔrG°(298.15 K) = 3.206 ± 0.025 kcal/mol | King 1951a, est unc | 0.237 | 7686.4 | NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc)  | ΔrH°(298.15 K) = 14.16 ± 0.01 kJ/mol | Spink 1975, Miller 1990 | 0.159 | 7694.3 | NH2CH2C(O)OH (aq, undissoc) → [NH2CH2C(O)O]- (aq) + H+ (aq)  | ΔrG°(298.15 K) = 55.810 ± 0.1 kJ/mol | Datta 1958, Datta 1958a, est unc | 0.145 | 7694.5 | NH2CH2C(O)OH (aq, undissoc) → [NH2CH2C(O)O]- (aq) + H+ (aq)  | ΔrG°(298.15 K) = 13.340 ± 0.025 kcal/mol | King 1951a, est unc | 0.123 | 7722.7 | [NH3CH2C(O)OH]+ (aq) → NH2CH2C(O)OH (aq, undissoc) + H+ (aq)  | ΔrH°(298.15 K) = 4.1 ± 0.2 kJ/mol | Wu 1990, est unc | 0.123 | 7722.8 | [NH3CH2C(O)OH]+ (aq) → NH2CH2C(O)OH (aq, undissoc) + H+ (aq)  | ΔrG°(298.15 K) = 13.4 ± 0.2 kJ/mol | Wu 1990, est unc | 0.112 | 7722.5 | [NH3CH2C(O)OH]+ (aq) → NH2CH2C(O)OH (aq, undissoc) + H+ (aq)  | ΔrG°(298.15 K) = 3.2068 ± 0.05 kcal/mol | King 1945, est unc | 0.112 | 7722.3 | [NH3CH2C(O)OH]+ (aq) → NH2CH2C(O)OH (aq, undissoc) + H+ (aq)  | ΔrG°(298.15 K) = 3.207 ± 0.05 kcal/mol | Owen 1934, est unc | 0.059 | 7686.10 | NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc)  | ΔrH°(298.15 K) = 14.17 ± 0.02 kJ/mol | Qiu 2009 | 0.039 | 7694.7 | NH2CH2C(O)OH (aq, undissoc) → [NH2CH2C(O)O]- (aq) + H+ (aq)  | ΔrG°(298.15 K) = 55.80 ± 0.2 kJ/mol | Owen 1934, est unc | 0.028 | 7722.6 | [NH3CH2C(O)OH]+ (aq) → NH2CH2C(O)OH (aq, undissoc) + H+ (aq)  | ΔrH°(298.15 K) = 0.958 ± 0.10 kcal/mol | King 1945, est unc | 0.019 | 7722.10 | [NH3CH2C(O)OH]+ (aq) → NH2CH2C(O)OH (aq, undissoc) + H+ (aq)  | ΔrG°(298.15 K) = 13.47 ± 0.50 kJ/mol | Isaeva 2018, est unc | 0.019 | 7722.2 | [NH3CH2C(O)OH]+ (aq) → NH2CH2C(O)OH (aq, undissoc) + H+ (aq)  | ΔrH°(298.15 K) = 0.953 ± 0.12 kcal/mol | King 1951a, est unc | 0.014 | 7686.3 | NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc)  | ΔrG°(298.15 K) = -2.22 ± 0.04 kJ/mol | Miller 1990 | 0.009 | 7686.8 | NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc)  | ΔrH°(298.15 K) = 14.17 ± 0.05 kJ/mol | Korolev 2007, Korolev 2007a | 0.007 | 7722.9 | [NH3CH2C(O)OH]+ (aq) → NH2CH2C(O)OH (aq, undissoc) + H+ (aq)  | ΔrH°(298.15 K) = 4.57 ± 0.80 kJ/mol | Isaeva 2018 | 0.006 | 7686.7 | NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc)  | ΔrH°(298.15 K) = 14.20 ± 0.06 kJ/mol | Palecz 1998, Palecz 1990 | 0.006 | 7686.15 | NH2CH2C(O)OH (cr, alpha) → NH2CH2C(O)OH (aq, undissoc)  | ΔrH°(298.15 K) = 14.12 ± 0.06 kJ/mol | Kelley 1978 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024)
[DOI: 10.1039/D4FD00110A]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|