Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Methylamine

Formula: CH3NH2 (g)
CAS RN: 74-89-5
ATcT ID: 74-89-5*0
SMILES: CN
InChI: InChI=1S/CH5N/c1-2/h2H2,1H3
InChIKey: BAVYZALUXZFZLV-UHFFFAOYSA-N
Hills Formula: C1H5N1

2D Image:

CN
Aliases: CH3NH2; Methylamine; Methanamine; Monomethylamine; Aminomethane; Carbinamine; Mercurialin; Methylaminen; UN 1061; UN 1235; NH2CH3
Relative Molecular Mass: 31.05714 ± 0.00088

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-6.45-21.16± 0.22kJ/mol

3D Image of CH3NH2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3NH2 (g)

The 20 contributors listed below account only for 44.7% of the provenance of ΔfH° of CH3NH2 (g).
A total of 220 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
8.12660.12 CH3NH2 (g) → C (g) N (g) + 5 H (g) ΔrH°(0 K) = 2268.24 ± 0.74 kJ/molGratzfeld 2017
3.82669.8 CH3NH2 (g) H2O (g) → CH3OH (g) NH3 (g) ΔrH°(0 K) = 4.07 ± 0.25 kcal/molKarton 2011
3.72668.8 CH3NH2 (g) CH4 (g) → CH3CH3 (g) NH3 (g) ΔrH°(0 K) = -8.14 ± 0.25 kcal/molKarton 2011
3.29060.2 CH3CH2NH2 (g) NH3 (g) → 2 CH3NH2 (g) ΔrH°(0 K) = 54.20 ± 1.5 kJ/molKlippenstein 2017
2.82660.11 CH3NH2 (g) → C (g) N (g) + 5 H (g) ΔrH°(0 K) = 542.22 ± 0.30 kcal/molKarton 2008, Karton 2011
2.05355.1 (CH3)2NH (l) + 15/2 O2 (g) → 4 CO2 (g) + 7 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -833.42 ± 0.20 (×2.709) kcal/molJaffe 1970, Cox 1970, as quoted by Cox 1970
1.92665.1 CH4 (g) NH3 (g) → CH3NH2 (g) H2 (g) ΔrH°(0 K) = 99.10 ± 1.5 kJ/molKlippenstein 2017
1.95356.1 (CH3)2NH (g) NH3 (g) → 2 CH3NH2 (g) ΔrH°(298.15 K) = 4.68 ± 0.40 kcal/molIssoire 1960, as quoted by Cox 1970
1.82669.9 CH3NH2 (g) H2O (g) → CH3OH (g) NH3 (g) ΔrH°(0 K) = 16.30 ± 1.5 kJ/molKlippenstein 2017
1.82668.9 CH3NH2 (g) CH4 (g) → CH3CH3 (g) NH3 (g) ΔrH°(0 K) = -34.98 ± 1.5 kJ/molKlippenstein 2017
1.69060.1 CH3CH2NH2 (g) NH3 (g) → 2 CH3NH2 (g) ΔrH°(0 K) = 13.03 ± 0.50 kcal/molLee 2021, est unc
1.62686.11 CH3NH (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 444.22 ± 0.30 kcal/molKarton 2008, Karton 2011
1.52669.7 CH3NH2 (g) H2O (g) → CH3OH (g) NH3 (g) ΔrH°(0 K) = 4.10 ± 0.4 kcal/molKarton 2011
1.42668.7 CH3NH2 (g) CH4 (g) → CH3CH3 (g) NH3 (g) ΔrH°(0 K) = -8.16 ± 0.4 kcal/molKarton 2011
1.35356.11 (CH3)2NH (g) NH3 (g) → 2 CH3NH2 (g) ΔrH°(0 K) = 20.50 ± 2.0 kJ/molKlippenstein 2017
1.25356.10 (CH3)2NH (g) NH3 (g) → 2 CH3NH2 (g) ΔrH°(0 K) = 4.88 ± 0.50 kcal/molLee 2021, est unc
1.12674.11 CH2NH2 (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 451.03 ± 0.30 kcal/molKarton 2008, Karton 2011
1.05569.5 (CH3)3N (g) + 2 NH3 (g) → 3 CH3NH2 (g) ΔrH°(0 K) = 12.71 ± 0.85 kcal/molRuscic W1RO
1.02666.1 CH3NH2 (l) + 9/2 O2 (g) → 2 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -507.08 ± 0.18 (×5.301) kcal/molJaffe 1970, Cox 1970, as quoted by Cox 1970
1.07835.5 NH2C(O)NH2 (g) + 2 CH4 (g) → CH2O (g) + 2 CH3NH2 (g) ΔrH°(0 K) = 55.40 ± 0.9 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3NH2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
87.5 Methylammoniumyl[CH3NH2]+ (g)C[NH2+]865.98852.05± 0.25kJ/mol31.05659 ±
0.00088
34516-31-9*0
47.6 MethylamineCH3NH2 (l)CN-45.18± 0.44kJ/mol31.05714 ±
0.00088
74-89-5*500
42.2 MethylamidogenCH3NH (g)C[NH]187.98177.33± 0.40kJ/mol30.04920 ±
0.00085
15622-51-2*0
42.1 Dimethylamine(CH3)2NH (g)CNC4.63-17.01± 0.47kJ/mol45.0837 ±
0.0017
124-40-3*0
39.3 AminomethylCH2NH2 (g)[CH2]N159.41149.57± 0.35kJ/mol30.04920 ±
0.00085
10507-29-6*0
36.3 EthylamineCH3CH2NH2 (g)CCN-28.05-49.82± 0.45kJ/mol45.0837 ±
0.0017
75-04-7*0
35.1 Trimethylamine(CH3)3N (g)CN(C)C2.64-26.21± 0.79kJ/mol59.1103 ±
0.0025
75-50-3*0
34.1 Aminomethylium[CH2NH2]+ (g)[CH2+]N763.61751.64± 0.53kJ/mol30.04865 ±
0.00085
488821-23-4*0
30.6 Trimethylamine(CH3)3N (l)CN(C)C-48.32± 0.89kJ/mol59.1103 ±
0.0025
75-50-3*500
30.4 Methylamidogen anion[CH3NH]- (g)C[NH-]145.40134.57± 0.64kJ/mol30.04975 ±
0.00085
54448-39-4*0

Most Influential reactions involving CH3NH2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9952661.1 CH3NH2 (g) → [CH3NH2]+ (g) ΔrH°(0 K) = 72930 ± 10 cm-1Baek 2003
0.7312667.1 CH3NH2 (l) → CH3NH2 (g) ΔrH°(298.15 K) = 23.85 ± 0.45 kJ/molMajer 1985
0.5162694.1 CH3NH2 (g) [NH2]- (g) → [CH3NH]- (g) NH3 (g) ΔrG°(296 K) = -0.51 ± 0.20 kcal/molMacKay 1976, note unc2
0.4072684.1 CH3NH2 (g) → [CH2NH2]+ (g) H (g) ΔrH°(0 K) = 10.228 ± 0.008 eVBodi 2006
0.3362662.6 [CH3NH2]- (g) → CH3NH2 (g) ΔrH°(0 K) = -0.983 ± 0.050 eVRuscic W1RO
0.3162673.11 [CH3NH3]+ (g) NH3 (g) → CH3NH2 (g) [NH4]+ (g) ΔrH°(0 K) = 11.30 ± 0.40 kcal/molLee 2021, est unc
0.2482695.1 [CH3NH]- (g) H2 (g) → H- (g) CH3NH2 (g) ΔrG°(296 K) = -1.46 ± 0.29 kcal/molMacKay 1976, note unc2
0.2312667.2 CH3NH2 (l) → CH3NH2 (g) ΔrH°(298.15 K) = 24.3 ± 0.8 kJ/molNBS Tables 1989
0.2265568.1 (CH3)3N (g) CH3NH2 (g) → 2 (CH3)2NH (g) ΔrH°(298.15 K) = 3.08 ± 0.40 kcal/molIssoire 1960, as quoted by Cox 1970
0.2042672.9 [CH3NH3]+ (g) → CH3NH2 (g) H+ (g) ΔrH°(0 K) = 213.41 ± 0.50 kcal/molLee 2021, est unc
0.1872693.3 CH3NH (g) NH3 (g) → CH3NH2 (g) NH2 (g) ΔrH°(0 K) = 8.01 ± 0.20 kcal/molKarton 2011
0.1562682.8 CH2NH2 (g) CH4 (g) → CH3NH2 (g) CH3 (g) ΔrH°(0 K) = 12.19 ± 0.20 kcal/molKarton 2011
0.1515419.7 CH2CHNH2 (g) CH3NH (g) → CH2CHNH (g, anti) CH3NH2 (g) ΔrH°(0 K) = -44.82 ± 2.0 kJ/molKlippenstein 2017
0.1515567.1 (CH3)3N (g) NH3 (g) → (CH3)2NH (g) CH3NH2 (g) ΔrH°(298.15 K) = 7.82 ± 0.40 kcal/molIssoire 1960, as quoted by Cox 1970
0.1345367.1 [CH3NHCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)2NH (g) ΔrH°(0 K) = 0.460 ± 0.025 eVBodi 2006
0.1205382.6 CH3NCH2 (g) NH3 (g) → CH2NH (g) CH3NH2 (g) ΔrH°(0 K) = 33.41 ± 2.0 kJ/molKlippenstein 2017
0.1185366.6 CH3NHCH2 (g) CH3NH2 (g) → CH2NH2 (g) (CH3)2NH (g) ΔrH°(0 K) = 2.15 ± 2.0 kJ/molKlippenstein 2017
0.1095524.6 CH2CHNH2 (g) CH3CH3 (g) → CH3CHCH2 (g) CH3NH2 (g) ΔrH°(0 K) = 28.47 ± 2.0 kJ/molKlippenstein 2017
0.1099060.2 CH3CH2NH2 (g) NH3 (g) → 2 CH3NH2 (g) ΔrH°(0 K) = 54.20 ± 1.5 kJ/molKlippenstein 2017
0.1032662.5 [CH3NH2]- (g) → CH3NH2 (g) ΔrH°(0 K) = -0.954 ± 0.090 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.