Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].
|
Azanide |
Formula: [NH2]- (g) |
CAS RN: 17655-31-1 |
ATcT ID: 17655-31-1*0 |
SMILES: [NH2-] |
InChI: InChI=1S/H2N/h1H2/q-1 |
InChIKey: HYGWNUKOUCZBND-UHFFFAOYSA-N |
Hills Formula: H2N1- |
2D Image: |
|
Aliases: [NH2]-; Azanide; Amide; Nitrogen dihydride ion; Amidogen anion; Amidogen ion (1-); Amino anion; Amino ion (1-); Amide anion; Amide ion (1-); Amido anion; Amido ion (1-); Aminyl anion; Aminyl ion (1-); Nitrogen dihydride anion; Nitrogen dihydride ion (1-); Dihydronitrogen anon; Dihydronitrogen ion (1-) |
Relative Molecular Mass: 16.02317 ± 0.00016 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
114.65 | 111.77 | ± 0.29 | kJ/mol |
|
3D Image of [NH2]- (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of [NH2]- (g)The 20 contributors listed below account only for 80.5% of the provenance of ΔfH° of [NH2]- (g). A total of 69 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 28.3 | 1677.1 | [NH2]- (g) → NH2 (g)  | ΔrH°(0 K) = 0.771 ± 0.005 eV | Wickham-Jones 1989 | 19.6 | 1678.11 | [NH2]- (g) → NH2 (g)  | ΔrH°(0 K) = 0.773 ± 0.006 eV | Feller 2016, note unc2 | 7.0 | 1677.4 | [NH2]- (g) → NH2 (g)  | ΔrH°(0 K) = 0.768 ± 0.010 eV | Radisic 2002 | 5.0 | 1685.4 | [NH2]- (g) + H2 (g) → H- (g) + NH3 (g)  | ΔrG°(296 K) = -1.916 ± 0.272 (×1.114) kcal/mol | Bohme 1973, MacKay 1976, note unc2 | 2.8 | 1685.2 | [NH2]- (g) + H2 (g) → H- (g) + NH3 (g)  | ΔrG°(297 K) = -1.945 ± 0.400 kcal/mol | Bohme 1973, note unc2 | 2.5 | 2694.1 | CH3NH2 (g) + [NH2]- (g) → [CH3NH]- (g) + NH3 (g)  | ΔrG°(296 K) = -0.51 ± 0.20 kcal/mol | MacKay 1976, note unc2 | 1.9 | 1687.1 | NH3 (g) → [NH2]+ (g) + H (g)  | ΔrH°(0 K) = 15.765 ± 0.002 eV | Song 2001a, note unc2 | 1.7 | 2571.1 | [CH2CH]- (g) + NH3 (g) → [NH2]- (g) + CH2CH2 (g)  | ΔrG°(298.15 K) = -4.54 ± 0.24 kcal/mol | Ervin 1990 | 1.7 | 9109.1 | CH3CH2NH2 (g) + [NH2]- (g) → [CH3CH2NH]- (g) + NH3 (g)  | ΔrG°(296 K) = -4.22 ± 0.36 kcal/mol | MacKay 1976, note unc2 | 1.5 | 2695.1 | [CH3NH]- (g) + H2 (g) → H- (g) + CH3NH2 (g)  | ΔrG°(296 K) = -1.46 ± 0.29 kcal/mol | MacKay 1976, note unc2 | 1.4 | 1678.10 | [NH2]- (g) → NH2 (g)  | ΔrH°(0 K) = 0.770 ± 0.022 eV | Boese 2004 | 1.0 | 1677.2 | [NH2]- (g) → NH2 (g)  | ΔrH°(0 K) = 0.744 ± 0.022 (×1.189) eV | Smyth 1972 | 0.8 | 9110.1 | CH3CH2NH2 (g) + H- (g) → [CH3CH2NH]- (g) + H2 (g)  | ΔrG°(296 K) = -2.56 ± 0.22 kcal/mol | MacKay 1976, note unc2 | 0.8 | 2688.1 | [CH3NH]- (g) → CH3NH (g)  | ΔrH°(0 K) = 0.432 ± 0.015 eV | Radisic 2002 | 0.7 | 6845.1 | [C6H5]- (g) → C6H5 (g)  | ΔrH°(0 K) = 1.096 ± 0.006 (×4.555) eV | Gunion 1992 | 0.7 | 2670.1 | CH3NH2 (g) + F- (g) → CH3F (g) + [NH2]- (g)  | ΔrH°(0 K) = 34.35 ± 0.8 kcal/mol | Gonzales 2003, est unc | 0.7 | 6862.1 | C6H6 (g) + [OH]- (g) → [C6H5]- (g) + H2O (g)  | ΔrH°(600 K) = 9.9 ± 0.6 (×1.297) kcal/mol | Meot-Ner 1986, Meot-Ner 1988, note std dev | 0.5 | 1678.9 | [NH2]- (g) → NH2 (g)  | ΔrH°(0 K) = 0.769 ± 0.035 eV | Parthiban 2001 | 0.5 | 1684.1 | NH3 (g) → [NH2]- (g) + H+ (g)  | ΔrH°(0 K) = 402.47 ± 0.90 kcal/mol | Ruscic W1RO, Ruscic W1U | 0.5 | 1677.3 | [NH2]- (g) → NH2 (g)  | ΔrH°(0 K) = 0.779 ± 0.037 eV | Celotta 1974 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of [NH2]- (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 72.0 | Phenide | [C6H5]- (g) | | 244.25 | 230.83 | ± 0.38 | kJ/mol | 77.1044 ± 0.0048 | 30922-78-2*0 | 26.9 | Amidogen | NH2 (g) | | 188.92 | 186.03 | ± 0.11 | kJ/mol | 16.02262 ± 0.00016 | 13770-40-6*0 | 26.8 | Azanylium | [NH2]+ (g) | | 1266.56 | 1264.49 | ± 0.11 | kJ/mol | 16.02207 ± 0.00016 | 15194-15-7*0 | 23.5 | Methylamidogen anion | [CH3NH]- (g) | | 145.40 | 134.57 | ± 0.64 | kJ/mol | 30.04975 ± 0.00085 | 54448-39-4*0 | 22.2 | Vinyl anion | [CH2CH]- (g) | | 236.98 | 232.56 | ± 0.68 | kJ/mol | 27.0458 ± 0.0016 | 25012-81-1*0 | 15.3 | p-Chlorophenide | [C6H4Cl]- (g) | | 179.5 | 169.1 | ± 1.5 | kJ/mol | 111.5492 ± 0.0049 | 77748-42-6*0 | 15.1 | m-Chlorophenide | [C6H4Cl]- (g) | | 172.5 | 162.3 | ± 1.5 | kJ/mol | 111.5492 ± 0.0049 | 77748-34-6*0 | 15.1 | o-Chlorophenide | [C6H4Cl]- (g) | | 158.7 | 148.7 | ± 1.5 | kJ/mol | 111.5492 ± 0.0049 | 72863-53-7*0 | 10.3 | Ethylamidogen anion | [CH3CH2NH]- (g) | | 106.51 | 88.86 | ± 0.80 | kJ/mol | 44.0763 ± 0.0017 | 54448-40-7*0 | 9.9 | Dimethylamide | [(CH3)2N]- (g) | | 123.1 | 104.7 | ± 1.4 | kJ/mol | 44.0763 ± 0.0017 | 34285-60-4*0 |
|
Most Influential reactions involving [NH2]- (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024)
[DOI: 10.1021/acs.jpca.4c02232]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|