Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Methylamidogen

Formula: CH3NH (g)
CAS RN: 15622-51-2
ATcT ID: 15622-51-2*0
SMILES: C[NH]
InChI: InChI=1S/CH4N/c1-2/h2H,1H3
InChIKey: YKPQUSLRUFLVDA-UHFFFAOYSA-N
Hills Formula: C1H4N1

2D Image:

C[NH]
Aliases: CH3NH; Methylamidogen; Methylamino; H3CNH; NHCH3; HNCH3
Relative Molecular Mass: 30.04920 ± 0.00085

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
187.98177.33± 0.40kJ/mol

3D Image of CH3NH (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3NH (g)

The 20 contributors listed below account only for 66.4% of the provenance of ΔfH° of CH3NH (g).
A total of 127 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
12.52676.3 CH3NH (g) NH3 (g) → CH3NH2 (g) NH2 (g) ΔrH°(0 K) = 8.01 ± 0.20 kcal/molKarton 2011
9.72669.11 CH3NH (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 444.22 ± 0.30 kcal/molKarton 2008, Karton 2011
7.52679.11 CH2NH2 (g) → CH3NH (g) ΔrH°(0 K) = 6.81 ± 0.25 kcal/molKarton 2011
5.92675.3 CH3NH2 (g) → CH3NH (g) H (g) ΔrH°(0 K) = 98.00 ± 0.30 kcal/molKarton 2011
4.12675.4 CH3NH2 (g) → CH3NH (g) H (g) ΔrH°(0 K) = 411.07 ± 1.5 kJ/molKlippenstein 2017
4.02676.2 CH3NH (g) NH3 (g) → CH3NH2 (g) NH2 (g) ΔrH°(0 K) = 8.00 ± 0.35 kcal/molKarton 2011
3.92676.4 CH3NH (g) NH3 (g) → CH3NH2 (g) NH2 (g) ΔrH°(0 K) = 32.49 ± 1.5 kJ/molKlippenstein 2017
2.92679.10 CH2NH2 (g) → CH3NH (g) ΔrH°(0 K) = 6.84 ± 0.40 kcal/molKarton 2011
2.82669.10 CH3NH (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 444.27 ± 0.56 kcal/molKarton 2011
2.32671.1 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.432 ± 0.015 eVRadisic 2002
1.72675.2 CH3NH2 (g) → CH3NH (g) H (g) ΔrH°(0 K) = 98.05 ± 0.56 kcal/molKarton 2011
1.52838.6 HCCNH (g) → CH2CN (g) ΔrH°(0 K) = -132.55 ± 1.5 kJ/molKlippenstein 2017
1.32643.12 CH3NH2 (g) → C (g) N (g) + 5 H (g) ΔrH°(0 K) = 2268.24 ± 0.74 kJ/molGratzfeld 2017
1.22839.6 HCCNH (g) CH4 (g) → CH3NH (g) HCCH (g) ΔrH°(0 K) = 87.84 ± 1.5 kJ/molKlippenstein 2017
0.95367.7 CH2CHNH2 (g) CH3NH (g) → CH2CHNH (g, anti) CH3NH2 (g) ΔrH°(0 K) = -44.82 ± 2.0 kJ/molKlippenstein 2017
0.72676.1 CH3NH (g) NH3 (g) → CH3NH2 (g) NH2 (g) ΔrH°(0 K) = 7.93 ± 0.8 kcal/molKarton 2011
0.62657.11 CH2NH2 (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 451.03 ± 0.30 kcal/molKarton 2008, Karton 2011
0.62677.1 CH3NH2 (g) [NH2]- (g) → [CH3NH]- (g) NH3 (g) ΔrG°(296 K) = -0.51 ± 0.20 kcal/molMacKay 1976, note unc2
0.62652.8 CH3NH2 (g) H2O (g) → CH3OH (g) NH3 (g) ΔrH°(0 K) = 4.07 ± 0.25 kcal/molKarton 2011
0.62651.8 CH3NH2 (g) CH4 (g) → CH3CH3 (g) NH3 (g) ΔrH°(0 K) = -8.14 ± 0.25 kcal/molKarton 2011

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3NH (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
41.5 MethylamineCH3NH2 (g)CN-6.44-21.14± 0.22kJ/mol31.05714 ±
0.00088
74-89-5*0
36.3 Methylammoniumyl[CH3NH2]+ (g)C[NH2+]866.00852.06± 0.25kJ/mol31.05659 ±
0.00088
34516-31-9*0
30.9 AminomethylCH2NH2 (g)[CH2]N159.43149.59± 0.35kJ/mol30.04920 ±
0.00085
10507-29-6*0
27.2 Methylamidogen anion[CH3NH]- (g)C[NH-]145.41134.58± 0.64kJ/mol30.04975 ±
0.00085
54448-39-4*0
23.9 EthynylamidogenHCCNH (g)C#C[NH]395.31393.28± 0.96kJ/mol40.0440 ±
0.0016
73456-14-1*0
19.5 MethylamineCH3NH2 (l)CN-45.17± 0.45kJ/mol31.05714 ±
0.00088
74-89-5*500
17.7 Dimethylamine(CH3)2NH (g)CNC4.66-16.98± 0.47kJ/mol45.0837 ±
0.0017
124-40-3*0
16.1 EthylamidogenCH3CH2NH (g)CC[NH]166.73150.61± 0.95kJ/mol44.0758 ±
0.0017
41084-92-8*0
14.7 2-IminoethylCH2CHNH (g, anti)[CH2]C=N219.36208.00± 0.86kJ/mol42.0599 ±
0.0016
73843-90-0*2
14.7 2-IminoethylCH2CHNH (g)[CH2]C=N219.36208.68± 0.86kJ/mol42.0599 ±
0.0016
73843-90-0*0

Most Influential reactions involving CH3NH (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.3912839.6 HCCNH (g) CH4 (g) → CH3NH (g) HCCH (g) ΔrH°(0 K) = 87.84 ± 1.5 kJ/molKlippenstein 2017
0.2922670.8 CH3NH (g) → [CH3NH]+ (g) ΔrH°(0 K) = 9.820 ± 0.040 eVRuscic W1RO
0.2022671.1 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.432 ± 0.015 eVRadisic 2002
0.1932676.3 CH3NH (g) NH3 (g) → CH3NH2 (g) NH2 (g) ΔrH°(0 K) = 8.01 ± 0.20 kcal/molKarton 2011
0.1762679.11 CH2NH2 (g) → CH3NH (g) ΔrH°(0 K) = 6.81 ± 0.25 kcal/molKarton 2011
0.1515367.7 CH2CHNH2 (g) CH3NH (g) → CH2CHNH (g, anti) CH3NH2 (g) ΔrH°(0 K) = -44.82 ± 2.0 kJ/molKlippenstein 2017
0.1195325.1 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.072 ± 0.034 eVRadisic 2002
0.0992669.11 CH3NH (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 444.22 ± 0.30 kcal/molKarton 2008, Karton 2011
0.0872670.4 CH3NH (g) → [CH3NH]+ (g) ΔrH°(0 K) = 9.825 ± 0.073 eVRuscic G4
0.0865325.6 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.079 ± 0.040 eVRuscic W1RO
0.0842675.3 CH3NH2 (g) → CH3NH (g) H (g) ΔrH°(0 K) = 98.00 ± 0.30 kcal/molKarton 2011
0.0832670.7 CH3NH (g) → [CH3NH]+ (g) ΔrH°(0 K) = 9.811 ± 0.075 eVRuscic CBS-n
0.0835495.5 NH(CH2CH2) (g) CH3NH (g) → N(CH2CH2) (g) CH3NH2 (g) ΔrH°(0 K) = -5.80 ± 0.9 kcal/molRuscic W1RO
0.0692679.10 CH2NH2 (g) → CH3NH (g) ΔrH°(0 K) = 6.84 ± 0.40 kcal/molKarton 2011
0.0675495.2 NH(CH2CH2) (g) CH3NH (g) → N(CH2CH2) (g) CH3NH2 (g) ΔrH°(0 K) = -5.91 ± 1.0 kcal/molRuscic G4
0.0675495.4 NH(CH2CH2) (g) CH3NH (g) → N(CH2CH2) (g) CH3NH2 (g) ΔrH°(0 K) = -6.01 ± 1.0 kcal/molRuscic CBS-n
0.0675367.6 CH2CHNH2 (g) CH3NH (g) → CH2CHNH (g, anti) CH3NH2 (g) ΔrH°(0 K) = -43.9 ± 3.0 kJ/molOReilly 2011
0.0678902.5 CH3CH2NH2 (g) CH3NH (g) → CH3CH2NH (g) CH3NH2 (g) ΔrH°(0 K) = 0.04 ± 0.85 kcal/molRuscic W1RO
0.0632676.2 CH3NH (g) NH3 (g) → CH3NH2 (g) NH2 (g) ΔrH°(0 K) = 8.00 ± 0.35 kcal/molKarton 2011
0.0622839.5 HCCNH (g) CH4 (g) → CH3NH (g) HCCH (g) ΔrH°(0 K) = 20.85 ± 0.9 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.