Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].
|
Propynylidene |
Formula: HCCCH (g, trans singlet) |
CAS RN: 67152-18-5 |
ATcT ID: 67152-18-5*4 |
SMILES: [CH]=C=[CH] |
SMILES: C#C[CH] |
InChI: InChI=1S/C3H2/c1-3-2/h1-2H |
InChIKey: OUSWHEMIRJJMAW-UHFFFAOYSA-N |
Hills Formula: C3H2 |
2D Image: |
|
Aliases: HCCCH; Propynylidene; 1,2-Propadiene-1,3-diyl; CHCCH; HC=C=CH; CH=C=CH; 2008-19-7; Propargylene; Propargylene radical; 2-Propynylidene; 2-Propyn-1-ylidene; HC-C~CH; HC~C-CH; CH-C~CH; CH~C-CH |
Relative Molecular Mass: 38.0480 ± 0.0024 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
597.4 | 599.2 | ± 1.1 | kJ/mol |
|
3D Image of HCCCH (g, trans singlet) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HCCCH (g, trans singlet)The 20 contributors listed below account only for 59.1% of the provenance of ΔfH° of HCCCH (g, trans singlet). A total of 93 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 11.3 | 3479.1 | [HCCCH]- (g, transoid 2B) + HCCCH (g, triplet) → [HCCCH]- (g, cisoid 2A) + HCCCH (g, trans singlet)  | ΔrH°(0 K) = 0.583 ± 0.010 eV | Osborn 2014 | 5.2 | 3475.6 | [HCCCH]- (g, transoid 2B) → [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 0.6 ± 0.5 kcal/mol | Osborn 2014, est unc | 4.1 | 3498.5 | HCCCH (g, trans singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.53 ± 1.2 kcal/mol | Ruscic W1RO | 3.6 | 3475.7 | [HCCCH]- (g, transoid 2B) → [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 0.54 ± 0.6 kcal/mol | Osborn 2014, est unc | 3.5 | 3498.2 | HCCCH (g, trans singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.53 ± 1.3 kcal/mol | Ruscic G4 | 3.2 | 3457.1 | [HCCCH]- (g, transoid 2B) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1.656 ± 0.005 (×6.727) eV | Osborn 2014 | 3.0 | 3498.1 | HCCCH (g, trans singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.51 ± 1.4 kcal/mol | Ruscic G3X | 2.3 | 3498.3 | HCCCH (g, trans singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.97 ± 1.6 kcal/mol | Ruscic CBS-n | 2.2 | 3472.3 | HCCCH (g, triplet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 4191 ± 450 cm-1 | Ruscic G4 | 2.2 | 3473.4 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1 ± 300 cm-1 | Ruscic W1RO | 2.0 | 3473.2 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 35 ± 310 cm-1 | Ruscic G4 | 2.0 | 3473.1 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 6 ± 315 cm-1 | Ruscic G3X | 1.9 | 3472.1 | HCCCH (g, triplet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 0.500 ± 0.010 (×5.907) eV | Osborn 2014 | 1.8 | 3472.6 | HCCCH (g, triplet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 4925 ± 420 (×1.164) cm-1 | Ruscic W1RO | 1.8 | 3472.2 | HCCCH (g, triplet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 4293 ± 490 cm-1 | Ruscic G3X | 1.7 | 3475.5 | [HCCCH]- (g, transoid 2B) → [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 226 ± 300 cm-1 | Ruscic W1RO | 1.6 | 3475.2 | [HCCCH]- (g, transoid 2B) → [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 185 ± 310 cm-1 | Ruscic G4 | 1.6 | 3473.3 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 5 ± 350 cm-1 | Ruscic CBS-n | 1.6 | 3475.1 | [HCCCH]- (g, transoid 2B) → [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 216 ± 315 cm-1 | Ruscic G3X | 1.4 | 3457.6 | [HCCCH]- (g, transoid 2B) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1.709 ± 0.050 eV | Ruscic W1RO |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HCCCH (g, trans singlet) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 47.7 | Propargylenide | [HCCCH]- (g, transoid 2B) | | 434.4 | 436.9 | ± 1.1 | kJ/mol | 38.0485 ± 0.0024 | 82906-05-6*1 | 47.7 | Propargylenide | [HCCCH]- (g) | | 434.4 | 437.6 | ± 1.1 | kJ/mol | 38.0485 ± 0.0024 | 82906-05-6*0 | 46.3 | Propynylidene | HCCCH (g, cis singlet) | | 597.7 | 599.4 | ± 1.3 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*3 | 46.3 | Propynylidene | HCCCH (g, singlet) | | 597.7 | 599.4 | ± 1.3 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*2 | 45.8 | Propynylidene | HCCCH (g) | | 543.47 | 546.47 | ± 0.65 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*0 | 45.8 | Propynylidene | HCCCH (g, triplet) | | 543.47 | 546.47 | ± 0.65 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*1 | 19.4 | Propadienylidene | CH2CC (g) | | 554.40 | 555.55 | ± 0.40 | kJ/mol | 38.0480 ± 0.0024 | 60731-10-4*0 | 19.0 | Propadienylidenide | [CH2CC]- (g) | | 381.14 | 382.04 | ± 0.41 | kJ/mol | 38.0485 ± 0.0024 | 109292-49-1*0 | 17.4 | Propynylidene cation | [HCCCH]+ (g) | | 1410.9 | 1413.4 | ± 1.3 | kJ/mol | 38.0474 ± 0.0024 | 75123-91-0*0 | 15.6 | Cyclopropenylidene | C(CHCH) (g) | | 497.05 | 496.08 | ± 0.45 | kJ/mol | 38.0480 ± 0.0024 | 16165-40-5*0 |
|
Most Influential reactions involving HCCCH (g, trans singlet)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.651 | 3479.1 | [HCCCH]- (g, transoid 2B) + HCCCH (g, triplet) → [HCCCH]- (g, cisoid 2A) + HCCCH (g, trans singlet)  | ΔrH°(0 K) = 0.583 ± 0.010 eV | Osborn 2014 | 0.116 | 3457.1 | [HCCCH]- (g, transoid 2B) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1.656 ± 0.005 (×6.727) eV | Osborn 2014 | 0.112 | 3473.4 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1 ± 300 cm-1 | Ruscic W1RO | 0.105 | 3473.2 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 35 ± 310 cm-1 | Ruscic G4 | 0.101 | 3473.1 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 6 ± 315 cm-1 | Ruscic G3X | 0.095 | 3478.4 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 227 ± 300 cm-1 | Ruscic W1RO | 0.089 | 3478.2 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 220 ± 310 cm-1 | Ruscic G4 | 0.086 | 3478.1 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 221 ± 315 cm-1 | Ruscic G3X | 0.082 | 3473.3 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 5 ± 350 cm-1 | Ruscic CBS-n | 0.070 | 3478.3 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 220 ± 350 cm-1 | Ruscic CBS-n | 0.052 | 3457.6 | [HCCCH]- (g, transoid 2B) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1.709 ± 0.050 eV | Ruscic W1RO | 0.047 | 3498.5 | HCCCH (g, trans singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.53 ± 1.2 kcal/mol | Ruscic W1RO | 0.040 | 3498.2 | HCCCH (g, trans singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.53 ± 1.3 kcal/mol | Ruscic G4 | 0.035 | 3457.3 | [HCCCH]- (g, transoid 2B) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1.705 ± 0.061 eV | Ruscic G4 | 0.034 | 3498.1 | HCCCH (g, trans singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.51 ± 1.4 kcal/mol | Ruscic G3X | 0.033 | 3472.3 | HCCCH (g, triplet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 4191 ± 450 cm-1 | Ruscic G4 | 0.029 | 3472.1 | HCCCH (g, triplet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 0.500 ± 0.010 (×5.907) eV | Osborn 2014 | 0.028 | 3472.6 | HCCCH (g, triplet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 4925 ± 420 (×1.164) cm-1 | Ruscic W1RO | 0.028 | 3472.2 | HCCCH (g, triplet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 4293 ± 490 cm-1 | Ruscic G3X | 0.026 | 3498.3 | HCCCH (g, trans singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.97 ± 1.6 kcal/mol | Ruscic CBS-n |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997229]
|
4
|
|
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022)
[DOI: 10.1021/jacs.2c07740]
|
5
|
|
B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
8
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|