Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Cyclopropenylidene

Formula: C(CHCH) (g)
CAS RN: 16165-40-5
ATcT ID: 16165-40-5*0
SMILES: C1=C=C1
InChI: InChI=1S/C3H2/c1-2-3-1/h1-2H
InChIKey: VVLPCWSYZYKZKR-UHFFFAOYSA-N
Hills Formula: C3H2

2D Image:

C1=C=C1
Aliases: C(CHCH); Cyclopropenylidene; 2-Cyclopropen-1-ylidene; C(CH=CH); c-C3H2; cyc-C3H2; 98206-68-9; 1,2-Cyclopropadiene; C(CH-CH)
Relative Molecular Mass: 38.0480 ± 0.0024

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
497.05496.08± 0.45kJ/mol

3D Image of C(CHCH) (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C(CHCH) (g)

The 20 contributors listed below account only for 74.4% of the provenance of ΔfH° of C(CHCH) (g).
A total of 114 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
17.23443.6 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 2068.97 ± 1.0 kJ/molVazquez 2009
14.23443.7 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 2068.71 ± 1.1 kJ/molVazquez 2009, est unc
10.43492.13 C(CHCH) (g) → CH2CC (g) ΔrH°(0 K) = 57.39 ± 0.6 kJ/molVazquez 2009, est unc
10.43492.14 C(CHCH) (g) → CH2CC (g) ΔrH°(0 K) = 57.53 ± 0.6 kJ/molVazquez 2009, est unc
4.83485.5 CH2CC (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 2011.58 ± 1.0 kJ/molVazquez 2009
4.03485.6 CH2CC (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 2011.18 ± 1.1 kJ/molVazquez 2009, est unc
2.93411.1 CH2CCH (g) → CH2CC (g) H (g) ΔrH°(0 K) = 416.69 ± 1.0 kJ/molVazquez 2009, est unc
2.43411.2 CH2CCH (g) → CH2CC (g) H (g) ΔrH°(0 K) = 416.71 ± 1.1 kJ/molVazquez 2009, est unc
1.83411.3 CH2CCH (g) → CH2CC (g) H (g) ΔrH°(0 K) = 99.45 ± 0.3 kcal/molKlippenstein 2015
1.03449.7 C(CHCH) (g) → HCCH (g) C (g) ΔrH°(0 K) = 443.63 ± 4 kJ/molAguilera-Iparraguirre 2008, est unc
0.73378.1 [CH2CCH]+ (g) → CH2CC (g) H+ (g) ΔrH°(0 K) = 888.4 ± 2.0 kJ/molBotschwina 2010a
0.53466.10 C(CHCH) (g) → HCCCH (g, triplet) ΔrH°(0 K) = 46.68 ± 4 kJ/molAguilera-Iparraguirre 2008, est unc
0.52172.11 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.92 ± 0.10 (×1.215) kJ/molThorpe 2021
0.43443.9 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 2067.90 ± 6 kJ/molAguilera-Iparraguirre 2008, est unc
0.43443.8 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 2065.2 ± 6.0 kJ/molLau 2006b, est unc
0.42279.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.43443.5 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 495.14 ± 1.50 kcal/molRuscic W1RO
0.43449.4 C(CHCH) (g) → HCCH (g) C (g) ΔrH°(0 K) = 106.51 ± 1.50 kcal/molRuscic W1RO
0.33443.4 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 494.01 ± 1.60 kcal/molRuscic CBS-n
0.33443.2 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 494.87 ± 1.60 kcal/molRuscic G4

Top 10 species with enthalpies of formation correlated to the ΔfH° of C(CHCH) (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
64.1 PropadienylideneCH2CC (g)C=C=[C]554.40555.55± 0.40kJ/mol38.0480 ±
0.0024
60731-10-4*0
62.4 Propadienylidenide[CH2CC]- (g)C=C=[C-]381.14382.04± 0.41kJ/mol38.0485 ±
0.0024
109292-49-1*0
31.3 2-Cyclopropen-1-ylium-1-yl[C(CHCH)]+ (g)C1=[C+]=C11382.01380.9± 1.1kJ/mol38.0474 ±
0.0024
85398-75-0*0
25.6 PropargylCH2CCH (g)[CH2]C#C354.02351.43± 0.32kJ/mol39.0559 ±
0.0024
2932-78-7*0
25.6 Propargylium[CH2CCH]+ (g)[CH2+]C#C1193.501190.68± 0.32kJ/mol39.0554 ±
0.0024
21540-27-2*0
25.4 CarbonC (g, quintuplet)[C]1114.9591120.105± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*3
25.4 CarbonC (g, singlet)[C]833.327838.474± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*2
25.4 CarbonC (g, triplet)[C]711.396716.881± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*1
25.4 CarbonC (g)[C]711.396716.881± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*0
25.4 Carbon cationC+ (g)[C+]1797.8491803.447± 0.041kJ/mol12.01015 ±
0.00080
14067-05-1*0

Most Influential reactions involving C(CHCH) (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.3573492.13 C(CHCH) (g) → CH2CC (g) ΔrH°(0 K) = 57.39 ± 0.6 kJ/molVazquez 2009, est unc
0.3573492.14 C(CHCH) (g) → CH2CC (g) ΔrH°(0 K) = 57.53 ± 0.6 kJ/molVazquez 2009, est unc
0.2963444.2 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.17 ± 0.02 eVHemberger 2010
0.2023445.5 [C(CHCH)]- (g) → C(CHCH) (g) ΔrH°(0 K) = -0.504 ± 0.050 eVRuscic W1RO
0.1863443.6 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 2068.97 ± 1.0 kJ/molVazquez 2009
0.1543443.7 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 2068.71 ± 1.1 kJ/molVazquez 2009, est unc
0.1363445.2 [C(CHCH)]- (g) → C(CHCH) (g) ΔrH°(0 K) = -0.450 ± 0.061 eVRuscic G4
0.1313444.1 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.15 ± 0.03 eVClauberg 1991, Clauberg 1992, Clauberg 1992a
0.0963444.8 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.164 ± 0.035 eVLau 2006a, Lau 2006b
0.0743444.7 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.172 ± 0.040 eVRuscic W1RO
0.0703445.1 [C(CHCH)]- (g) → C(CHCH) (g) ΔrH°(0 K) = -0.489 ± 0.085 eVRuscic G3X
0.0623445.4 [C(CHCH)]- (g) → C(CHCH) (g) ΔrH°(0 K) = -0.485 ± 0.090 eVRuscic CBS-n
0.0593445.3 [C(CHCH)]- (g) → C(CHCH) (g) ΔrH°(0 K) = -0.504 ± 0.092 eVRuscic CBS-n
0.0473444.9 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.151 ± 0.050 eVHemberger 2010, est unc
0.0293466.10 C(CHCH) (g) → HCCCH (g, triplet) ΔrH°(0 K) = 46.68 ± 4 kJ/molAguilera-Iparraguirre 2008, est unc
0.0223444.4 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.184 ± 0.073 eVRuscic G4
0.0213444.6 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.187 ± 0.075 eVRuscic CBS-n
0.0203466.8 C(CHCH) (g) → HCCCH (g, triplet) ΔrH°(0 K) = 47.9 ± 4.8 kJ/molLau 2006b, est unc
0.0193450.1 [CH(CHCH)]+ (g) NH3 (g) → C(CHCH) (g) [NH4]+ (g) ΔrH°(0 K) = 1.01 ± 0.08 eVChyall 1995
0.0183466.4 C(CHCH) (g) → HCCCH (g, triplet) ΔrH°(0 K) = 10.80 ± 1.2 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.