Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Cyclopentene

Formula: CH2(CH2CHCHCH2) (g)
CAS RN: 142-29-0
ATcT ID: 142-29-0*0
SMILES: C1CC=CC1
InChI: InChI=1S/C5H8/c1-2-4-5-3-1/h1-2H,3-5H2
InChIKey: LPIQUOYDBNQMRZ-UHFFFAOYSA-N
Hills Formula: C5H8

2D Image:

C1CC=CC1
Aliases: CH2(CH2CHCHCH2); Cyclopentene; cyc-C5H8; UN 2246; NSC 5160
Relative Molecular Mass: 68.1170 ± 0.0040

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
59.6035.34± 0.46kJ/mol

3D Image of CH2(CH2CHCHCH2) (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH2(CH2CHCHCH2) (g)

The 20 contributors listed below account only for 76.0% of the provenance of ΔfH° of CH2(CH2CHCHCH2) (g).
A total of 68 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
18.53729.1 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -3290.85 ± 0.72 kJ/molJohnson 1946
18.03731.1 CH2(CH2CHCHCH2) (g) H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = -26.67 ± 0.06 kcal/molDolliver 1937
15.93729.4 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.84 ± 0.14 (×1.325) kcal/molKaarsemaker 1952, as quoted by Cox 1970
6.13729.3 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.61 ± 0.30 kcal/molSpitzer 1947
2.73734.2 CH2(CH2CHCHCH2) (l) + 7 O2 (g) → 5 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -744.54 ± 0.14 (×4.269) kcal/molLabbauf 1961
2.13734.1 CH2(CH2CHCHCH2) (l) + 7 O2 (g) → 5 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -744.45 ± 0.17 (×4) kcal/molProsen 1944c, Labbauf 1961, Epstein 1949
2.0120.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.53739.1 CH2(CHCHCHCH) (g) + 2 H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(355.15 K) = -50.907 ± 0.200 kcal/molKistiakowsky 1936
1.03736.6 CH2(CHCHCHCH) (g) → 5 C (g) + 6 H (g) ΔrH°(0 K) = 1123.70 ± 0.50 kcal/molKarton 2017
0.96195.2 CH2(CH2CH2CH2CH2CH2C (cr,l) + 21/2 O2 (g) → 7 CO2 (g) + 7 H2O (cr,l) ΔrH°(298.15 K) = -1099.09 ± 0.14 kcal/molKaarsemaker 1952, as quoted by Cox 1970
0.83731.2 CH2(CH2CHCHCH2) (g) H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = -26.94 ± 0.13 (×2.089) kcal/molAllinger 1982
0.76199.5 CH2(CHCHCH2CH2CH2CH2 (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = -0.05 ± 0.85 kcal/molRuscic W1RO
0.63781.5 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.53 ± 0.85 kcal/molRuscic W1RO
0.62101.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.66199.2 CH2(CHCHCH2CH2CH2CH2 (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 0.85 ± 0.90 kcal/molRuscic G4
0.66199.4 CH2(CHCHCH2CH2CH2CH2 (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 0.80 ± 0.90 kcal/molRuscic CBS-n
0.66199.1 CH2(CHCHCH2CH2CH2CH2 (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 0.77 ± 0.90 kcal/molRuscic G3X
0.67363.5 CH3CH(CH2CH2CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH(CH3)3 (g) ΔrH°(0 K) = 0.30 ± 0.85 kcal/molRuscic W1RO
0.63781.4 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.76 ± 0.90 kcal/molRuscic CBS-n
0.63781.1 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.97 ± 0.90 kcal/molRuscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2(CH2CHCHCH2) (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
88.6 CyclopenteneCH2(CH2CHCHCH2) (l)C1CC=CC17.06± 0.51kJ/mol68.1170 ±
0.0040
142-29-0*590
86.2 CyclopentaneCH2(CH2CH2CH2CH2) (g)C1CCCC1-43.68-76.25± 0.41kJ/mol70.1329 ±
0.0041
287-92-3*0
85.7 CyclopentaneCH2(CH2CH2CH2CH2) (l)C1CCCC1-104.93± 0.41kJ/mol70.1329 ±
0.0041
287-92-3*590
59.8 CyclopentadieneCH2(CHCHCHCH) (l)C1C=CC=C1110.08± 0.59kJ/mol66.1011 ±
0.0040
542-92-7*590
41.3 CyclopentadieneCH2(CHCHCHCH) (g)C1C=CC=C1151.45134.33± 0.61kJ/mol66.1011 ±
0.0040
542-92-7*0
27.7 Norbornadiene(CHCH)(CHCH2CH)(CHCH (g)C1C2C=CC1C=C2267.68242.24± 0.98kJ/mol92.1384 ±
0.0056
121-46-0*0
26.0 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.991± 0.030kJ/mol62.0248 ±
0.0012
463-79-6*1000
23.6 WaterH2O (l)O-285.796± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*590
23.6 WaterH2O (l, eq.press.)O-285.797± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*589
23.6 WaterH2O (cr,l)O-286.268-285.796± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*500

Most Influential reactions involving CH2(CH2CHCHCH2) (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8553731.1 CH2(CH2CHCHCH2) (g) H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = -26.67 ± 0.06 kcal/molDolliver 1937
0.6413733.1 CH2(CH2CHCHCH2) (l) → CH2(CH2CHCHCH2) (g) ΔrH°(298.15 K) = 6.71 ± 0.07 kcal/molWagman 1949, Forziati 1950, Epstein 1949
0.3143733.2 CH2(CH2CHCHCH2) (l) → CH2(CH2CHCHCH2) (g) ΔrH°(300.15 K) = 6.78 ± 0.1 kcal/molLister 1941, est unc
0.0496199.5 CH2(CHCHCH2CH2CH2CH2 (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = -0.05 ± 0.85 kcal/molRuscic W1RO
0.0446199.1 CH2(CHCHCH2CH2CH2CH2 (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 0.77 ± 0.90 kcal/molRuscic G3X
0.0446199.2 CH2(CHCHCH2CH2CH2CH2 (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 0.85 ± 0.90 kcal/molRuscic G4
0.0446199.4 CH2(CHCHCH2CH2CH2CH2 (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 0.80 ± 0.90 kcal/molRuscic CBS-n
0.0413731.2 CH2(CH2CHCHCH2) (g) H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = -26.94 ± 0.13 (×2.089) kcal/molAllinger 1982
0.0366199.3 CH2(CHCHCH2CH2CH2CH2 (g) CH3CH3 (g) → CH2(CH2CHCHCH2) (g) CH3CH2CH2CH3 (g) ΔrH°(0 K) = 0.59 ± 1.0 kcal/molRuscic CBS-n
0.0103787.5 CH2(CHCHCH2CH2CH2) (g) CH2(CH2CH2CH2CH2) (g) → CH2(CH2CH2CH2CH2CH2) (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = -1.71 ± 0.85 kcal/molRuscic W1RO
0.0093787.4 CH2(CHCHCH2CH2CH2) (g) CH2(CH2CH2CH2CH2) (g) → CH2(CH2CH2CH2CH2CH2) (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = -1.58 ± 0.90 kcal/molRuscic CBS-n
0.0093787.1 CH2(CHCHCH2CH2CH2) (g) CH2(CH2CH2CH2CH2) (g) → CH2(CH2CH2CH2CH2CH2) (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = -1.71 ± 0.90 kcal/molRuscic G3X
0.0093787.2 CH2(CHCHCH2CH2CH2) (g) CH2(CH2CH2CH2CH2) (g) → CH2(CH2CH2CH2CH2CH2) (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = -1.81 ± 0.90 kcal/molRuscic G4
0.0073787.3 CH2(CHCHCH2CH2CH2) (g) CH2(CH2CH2CH2CH2) (g) → CH2(CH2CH2CH2CH2CH2) (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = -1.76 ± 1.0 kcal/molRuscic CBS-n
0.0053730.5 CH2(CH2CHCHCH2) (g) → 5 C (g) + 8 H (g) ΔrH°(0 K) = 1250.52 ± 1.50 (×1.044) kcal/molRuscic W1RO
0.0053730.4 CH2(CH2CHCHCH2) (g) → 5 C (g) + 8 H (g) ΔrH°(0 K) = 1250.33 ± 1.60 kcal/molRuscic CBS-n
0.0053730.2 CH2(CH2CHCHCH2) (g) → 5 C (g) + 8 H (g) ΔrH°(0 K) = 1248.22 ± 1.60 kcal/molRuscic G4
0.0043732.5 CH2(CH2CHCHCH2) (g) CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH2CH2 (g) ΔrH°(0 K) = 6.27 ± 0.9 kcal/molRuscic W1RO
0.0043730.1 CH2(CH2CHCHCH2) (g) → 5 C (g) + 8 H (g) ΔrH°(0 K) = 1248.20 ± 1.72 kcal/molRuscic G3X
0.0033732.4 CH2(CH2CHCHCH2) (g) CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH2CH2 (g) ΔrH°(0 K) = 6.10 ± 1.0 kcal/molRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.