Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Benzoic acid

Formula: C6H5C(O)OH (g)
CAS RN: 65-85-0
ATcT ID: 65-85-0*0
SMILES: c1ccc(cc1)C(=O)O
InChI: InChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)
InChIKey: WPYMKLBDIGXBTP-UHFFFAOYSA-N
Hills Formula: C7H6O2

2D Image:

c1ccc(cc1)C(=O)O
Aliases: C6H5C(O)OH; Benzoic acid; Benzenecarboxylic acid; Benzenemethanoic acid
Relative Molecular Mass: 122.1213 ± 0.0056

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-274.30-294.10± 0.19kJ/mol

3D Image of C6H5C(O)OH (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H5C(O)OH (g)

The 20 contributors listed below account only for 86.1% of the provenance of ΔfH° of C6H5C(O)OH (g).
A total of 28 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
22.27980.5 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(353.15 K) = 89.45 ± 0.10 kJ/molde Kruif 1982, Kiyobayashi 2001, note unc2
8.82101.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
6.27979.9 C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -3227.21 ± 0.27 kJ/molChalloner 1955
6.27979.1 C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -3226.86 ± 0.27 kJ/molProsen 1944
5.07979.10 C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -3227.26 ± 0.30 kJ/molCoops 1956
4.5120.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
4.47979.4 C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -3226.89 ± 0.32 kJ/molJessup 1946, Jessup 1942, Jessup 1934
3.52101.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
3.52101.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
2.87979.7 C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -3226.91 ± 0.40 kJ/molChurney 1968
2.57979.8 C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -3227.42 ± 0.33 (×1.269) kJ/molGundry 1958
2.32101.10 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
2.37979.3 C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -3226.90 ± 0.44 kJ/molPilcher 1984
1.87979.2 C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -3226.84 ± 0.49 kJ/molLi 1990
1.87979.5 C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -3226.66 ± 0.50 kJ/molMosselman 1969, note unc, est unc
1.87979.6 C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -3226.90 ± 0.50 kJ/molGundry 1969, note unc, est unc
1.62101.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
1.52245.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.37980.4 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(298.15 K) = 90.6 ± 0.4 kJ/molColomina 1982, note unc
1.32101.2 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/molDewey 1938, note CO2, Rossini 1938, note CO2c

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5C(O)OH (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
86.6 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.30-384.72± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500
53.1 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.991± 0.030kJ/mol62.0248 ±
0.0012
463-79-6*1000
51.4 Benzoyl chlorideC6H5C(O)Cl (cr,l)c1ccc(cc1)C(=O)Cl-157.08± 0.26kJ/mol140.5667 ±
0.0057
98-88-4*500
50.2 Carbon dioxideCO2 (g)C(=O)=O-393.110-393.476± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
49.6 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.091936.926± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
45.0 Succinic acid(CH2C(O)OH)2 (cr,l)OC(=O)CCC(=O)O-918.47-940.19± 0.12kJ/mol118.0880 ±
0.0034
110-15-6*500
39.4 Carbon dioxideCO2 (aq, undissoc)C(=O)=O-413.195± 0.019kJ/mol44.00950 ±
0.00100
124-38-9*1000
39.3 Hydrogen carbonate[HOC(O)O]- (aq)O[C](=O)[O-]-689.858± 0.040kJ/mol61.0174 ±
0.0012
71-52-3*800
35.4 WaterH2O (cr,l)O-286.268-285.796± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*500
35.4 WaterH2O (l)O-285.796± 0.025kJ/mol18.01528 ±
0.00033
7732-18-5*590

Most Influential reactions involving C6H5C(O)OH (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8987980.5 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(353.15 K) = 89.45 ± 0.10 kJ/molde Kruif 1982, Kiyobayashi 2001, note unc2
0.0567980.4 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(298.15 K) = 90.6 ± 0.4 kJ/molColomina 1982, note unc
0.0177978.5 C6H5C(O)OH (g) CH3CH3 (g) → C6H5CH3 (g) CH3C(O)OH (g) ΔrH°(0 K) = -0.15 ± 0.85 kcal/molRuscic W1RO
0.0157978.2 C6H5C(O)OH (g) CH3CH3 (g) → C6H5CH3 (g) CH3C(O)OH (g) ΔrH°(0 K) = -0.12 ± 0.90 kcal/molRuscic G4
0.0157978.1 C6H5C(O)OH (g) CH3CH3 (g) → C6H5CH3 (g) CH3C(O)OH (g) ΔrH°(0 K) = 0.32 ± 0.90 (×1.022) kcal/molRuscic G3X
0.0127978.3 C6H5C(O)OH (g) CH3CH3 (g) → C6H5CH3 (g) CH3C(O)OH (g) ΔrH°(0 K) = 0.38 ± 1.00 kcal/molRuscic CBS-n
0.0117978.4 C6H5C(O)OH (g) CH3CH3 (g) → C6H5CH3 (g) CH3C(O)OH (g) ΔrH°(0 K) = 0.48 ± 0.90 (×1.189) kcal/molRuscic CBS-n
0.0097980.3 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(298.15 K) = 91.4 ± 1.0 kJ/molMonte 2006, note unc
0.0097980.2 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(307.1 K) = 90.0 ± 1.0 kJ/molRibeiro da Silva 2006, note unc
0.0077981.8 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(298.15 K) = 21.39 ± 0.08 (×3.364) kcal/molMorawetz 1972, note unc
0.0047980.7 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(298.15 K) = 89.25 ± 0.85 (×1.61) kJ/molDa Silva 1990
0.0027980.8 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(298.15 K) = 90.9 ± 2.0 kJ/molSelvakumar 2009
0.0017981.5 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(365.5 K) = 21.85 ± 0.10 (×5.536) kcal/molDavies 1954, Malaspina 1973, 2nd Law
0.0017980.6 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(298.15 K) = 88.3 ± 1.0 (×2.327) kJ/molnote unc2
0.0017980.9 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(335 K) = 87.45 ± 0.68 (×3.513) kJ/molTorres-Gomez 1988, note unc
0.0017980.1 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(298.15 K) = 93.3 ± 1.2 (×2.278) kJ/molFreedman 2008
0.0017981.7 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(383 K) = 20.5 ± 0.5 (×1.414) kcal/molHirsbrunner 1934, Malaspina 1973, 2nd Law, est unc
0.0007981.2 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(360.8 K) = 20.597 ± 0.079 (×9.31) kcal/molMalaspina 1973, 2nd Law
0.0007981.1 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(360.8 K) = 20.557 ± 0.100 (×7.829) kcal/molMalaspina 1973, 2nd Law
0.0007981.4 C6H5C(O)OH (cr,l) → C6H5C(O)OH (g) ΔrH°(303 K) = 20.7 ± 0.40 (×2.378) kcal/molWiedemann 1970, Wiedemann 1972, Malaspina 1973, 2nd Law


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.