Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]

This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]

Fluorobenzene

Formula: C6H5F (cr,l)
CAS RN: 462-06-6
ATcT ID: 462-06-6*500
SMILES: c1ccc(cc1)F
InChI: InChI=1S/C6H5F/c7-6-4-2-1-3-5-6/h1-5H
InChIKey: PYLWMHQQBFSUBP-UHFFFAOYSA-N
Hills Formula: C6H5F1

2D Image:

c1ccc(cc1)F
Aliases: Fluorobenzene; Phenyl fluoride; Monofluorobenzene; Benzenyl fluoride; C6H5F; UN 2387
Relative Molecular Mass: 96.1023 ± 0.0048

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-152.13-149.72± 0.88kJ/mol

Top contributors to the provenance of ΔfH° of C6H5F (cr,l)

The 15 contributors listed below account for 90.7% of the provenance of ΔfH° of C6H5F (cr,l).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
50.46377.1 C6H5F (cr,l) + 7 O2 (g) → 6 CO2 (g) HF (aq, 60 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -741.88 ± 0.29 kcal/molGood 1956
4.96378.8 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 8.71 ± 0.9 kcal/molRuscic W1RO
4.06378.7 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 9.08 ± 1.0 kcal/molRuscic CBS-n
4.06378.4 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 8.76 ± 1.0 kcal/molRuscic G4
3.36378.3 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 9.37 ± 1.1 kcal/molRuscic G3X
2.86380.8 C6H5F (g) H (g) → C6H6 (g) F (g) ΔrH°(0 K) = 14.42 ± 1.2 kcal/molRuscic W1RO
2.86379.8 C6H5F (g) H2 (g) → C6H6 (g) HF (g) ΔrH°(0 K) = -18.03 ± 1.2 kcal/molRuscic W1RO
2.46380.7 C6H5F (g) H (g) → C6H6 (g) F (g) ΔrH°(0 K) = 14.50 ± 1.3 kcal/molRuscic CBS-n
2.46380.4 C6H5F (g) H (g) → C6H6 (g) F (g) ΔrH°(0 K) = 14.14 ± 1.3 kcal/molRuscic G4
2.46379.7 C6H5F (g) H2 (g) → C6H6 (g) HF (g) ΔrH°(0 K) = -17.06 ± 1.3 kcal/molRuscic CBS-n
2.46379.4 C6H5F (g) H2 (g) → C6H6 (g) HF (g) ΔrH°(0 K) = -17.72 ± 1.3 kcal/molRuscic G4
2.36378.6 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 9.02 ± 1.3 kcal/molRuscic CBS-n
2.16380.3 C6H5F (g) H (g) → C6H6 (g) F (g) ΔrH°(0 K) = 14.75 ± 1.4 kcal/molRuscic G3X
2.16379.3 C6H5F (g) H2 (g) → C6H6 (g) HF (g) ΔrH°(0 K) = -16.76 ± 1.4 kcal/molRuscic G3X
1.86369.8 C6H5F (g) → 6 C (g) + 5 H (g) F (g) ΔrH°(0 K) = 1321.68 ± 1.50 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5F (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 FluorobenzeneC6H5F (g)c1ccc(cc1)F-99.41-115.09± 0.88kJ/mol96.1023 ±
0.0048
462-06-6*0
99.8 Fluorobenzene cation[C6H5F]+ (g)c1ccc(cc1)[F+]788.56773.54± 0.88kJ/mol96.1018 ±
0.0048
34468-25-2*0
49.4 Fluorobenzene anion[C6H5F]- (g)c1ccc(cc1)[F-]-18.7-30.5± 1.8kJ/mol96.1029 ±
0.0048
34561-55-2*0
14.0 BenzeneC6H6 (g)c1ccccc1100.7583.23± 0.22kJ/mol78.1118 ±
0.0048
71-43-2*0
14.0 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.64976.17± 0.22kJ/mol78.1113 ±
0.0048
34504-50-2*0
14.0 BenzeneC6H6 (cr,l)c1ccccc150.8449.29± 0.22kJ/mol78.1118 ±
0.0048
71-43-2*500
10.1 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.991± 0.030kJ/mol62.0248 ±
0.0012
463-79-6*1000
9.1 Carbon dioxideCO2 (g)C(=O)=O-393.110-393.476± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
9.0 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.091936.926± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
8.6 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.30-384.72± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500

Most Influential reactions involving C6H5F (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5186377.1 C6H5F (cr,l) + 7 O2 (g) → 6 CO2 (g) HF (aq, 60 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -741.88 ± 0.29 kcal/molGood 1956
0.2726375.4 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 34.63 ± 0.07 kJ/molBasarova 1991, Boublik 1984
0.1906375.5 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 8.278 ± 0.02 kcal/molScott 1956
0.1646375.1 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 34.68 ± 0.09 kJ/molMajer 1985, Scott 1956
0.1546375.3 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 34.677 ± 0.093 kJ/molThermoData 2004
0.0636376.4 C6H5F (cr,l) → C6H5F (g) ΔrG°(314.158 K) = 4.127 ± 0.145 kJ/molThermoData 2004, 3rd Law
0.0546376.10 C6H5F (cr,l) → C6H5F (g) ΔrG°(296.09 K) = 5.885 ± 0.157 kJ/molYoung 1889, 3rd Law, ThermoData 2004
0.0496376.2 C6H5F (cr,l) → C6H5F (g) ΔrG°(294.195 K) = 6.059 ± 0.164 kJ/molThermoData 2004, 3rd Law
0.0246376.8 C6H5F (cr,l) → C6H5F (g) ΔrG°(334.18 K) = 2.214 ± 0.232 kJ/molScott 1956, 3rd Law, ThermoData 2004
0.0246376.6 C6H5F (cr,l) → C6H5F (g) ΔrG°(334.83 K) = 2.157 ± 0.235 kJ/molDiaz-Pena 1980, 3rd Law, ThermoData 2004
0.0006376.3 C6H5F (cr,l) → C6H5F (g) ΔrH°(314.158 K) = 35.015 ± 2.693 kJ/molThermoData 2004, 2nd Law
0.0006376.9 C6H5F (cr,l) → C6H5F (g) ΔrH°(296.09 K) = 34.638 ± 3.092 kJ/molYoung 1889, 2nd Law, ThermoData 2004
0.0006376.1 C6H5F (cr,l) → C6H5F (g) ΔrH°(294.195 K) = 35.848 ± 3.362 kJ/molThermoData 2004, 2nd Law
0.0006376.7 C6H5F (cr,l) → C6H5F (g) ΔrH°(334.18 K) = 32.893 ± 3.726 kJ/molScott 1956, 2nd Law, ThermoData 2004
0.0006376.5 C6H5F (cr,l) → C6H5F (g) ΔrH°(334.83 K) = 32.978 ± 3.785 kJ/molDiaz-Pena 1980, 2nd Law, ThermoData 2004


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885923]
4   Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
5   B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H]
8   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
9   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.