Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Phenide[C6H5]- (g)c1cccc[c-]1244.35230.92± 0.39kJ/mol77.1044 ±
0.0048
30922-78-2*0

Representative Geometry of [C6H5]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C6H5]- (g)

The 20 contributors listed below account only for 73.9% of the provenance of ΔfH° of [C6H5]- (g).
A total of 122 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
15.51443.1 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.771 ± 0.005 eVWickham-Jones 1989
10.81444.11 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.773 ± 0.006 eVFeller 2016, note unc2
10.65610.1 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.047 kcal/molDavico 1995
4.85586.3 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.97 ± 0.09 kcal/molCoops 1947, Coops 1946
3.95586.1 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.98 ± 0.10 kcal/molProsen 1945a, as quoted by Cox 1970
3.95586.4 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.92 ± 0.10 kcal/molGood 1969
3.81443.4 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.768 ± 0.010 eVRadisic 2002
2.81451.4 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(296 K) = -1.916 ± 0.272 (×1.091) kcal/molBohme 1973, MacKay 1976, note unc2
2.75586.2 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.96 ± 0.12 kcal/molCox 1970
2.35610.3 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.618 ± 0.101 kcal/molDavico 1995
1.51451.2 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(297 K) = -1.945 ± 0.400 kcal/molBohme 1973, note unc2
1.55610.2 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.125 kcal/molDavico 1995
1.41843.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.45594.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 (×3.668) eVGunion 1992
1.32297.1 CH3NH2 (g) [NH2]- (g) → [CH3NH]- (g) NH3 (g) ΔrG°(296 K) = -0.51 ± 0.20 kcal/molMacKay 1976, note unc2
1.2120.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.11453.1 NH3 (g) → [NH2]+ (g) H (g) ΔrH°(0 K) = 15.765 ± 0.002 eVSong 2001a, note unc2
0.82298.1 [CH3NH]- (g) H2 (g) → H- (g) CH3NH2 (g) ΔrG°(296 K) = -1.46 ± 0.29 kcal/molMacKay 1976, note unc2
0.82180.1 [CH2CH]- (g) NH3 (g) → [NH2]- (g) CH2CH2 (g) ΔrG°(298.15 K) = -4.54 ± 0.24 kcal/molErvin 1990
0.81444.10 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.770 ± 0.022 eVBoese 2004

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6H5]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
71.9 Azanide[NH2]- (g)[NH2-]114.66111.78± 0.30kJ/mol16.02317 ±
0.00016
17655-31-1*0
53.4 BenzeneC6H6 (g)c1ccccc1100.7583.24± 0.22kJ/mol78.1118 ±
0.0048
71-43-2*0
53.4 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.65976.18± 0.22kJ/mol78.1113 ±
0.0048
34504-50-2*0
53.4 BenzeneC6H6 (cr,l)c1ccccc150.8549.30± 0.22kJ/mol78.1118 ±
0.0048
71-43-2*500
24.6 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.991± 0.030kJ/mol62.0248 ±
0.0012
463-79-6*1000
21.9 PhenylC6H5 (g)c1cccc[c]1352.19338.83± 0.63kJ/mol77.1039 ±
0.0048
2396-01-2*0
20.5 Succinic acid(CH2C(O)OH)2 (cr,l)OC(=O)CCC(=O)O-918.47-940.19± 0.12kJ/mol118.0880 ±
0.0034
110-15-6*500
20.4 Carbon dioxideCO2 (g)C(=O)=O-393.110-393.476± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
20.3 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.30-384.72± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500
20.2 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.091936.925± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0

Most Influential reactions involving [C6H5]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7155610.1 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.047 kcal/molDavico 1995
0.1625933.5 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -9.09 ± 0.8 kcal/molRuscic W1RO
0.1625935.5 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -12.76 ± 0.8 kcal/molRuscic W1RO
0.1585931.5 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -7.31 ± 0.8 kcal/molRuscic W1RO
0.1545610.3 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.618 ± 0.101 kcal/molDavico 1995
0.1045933.3 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -8.66 ± 1.0 kcal/molRuscic G4
0.1035935.3 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -12.18 ± 1.0 kcal/molRuscic G4
0.1015931.3 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -7.12 ± 1.0 kcal/molRuscic G4
0.1015610.2 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.125 kcal/molDavico 1995
0.0965594.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 (×3.668) eVGunion 1992
0.0725933.2 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -8.97 ± 1.2 kcal/molRuscic G3X
0.0725935.2 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -11.87 ± 1.2 kcal/molRuscic G3X
0.0705931.2 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -7.37 ± 1.2 kcal/molRuscic G3X
0.0677378.2 C6H4(C4H4) (g) [C6H5]- (g) → [C6H4(CHCCHCH)]- (g) C6H6 (g) ΔrH°(0 K) = -5.54 ± 1.0 kcal/molRuscic G4
0.0677378.4 C6H4(C4H4) (g) [C6H5]- (g) → [C6H4(CHCCHCH)]- (g) C6H6 (g) ΔrH°(0 K) = -6.09 ± 1.0 kcal/molRuscic CBS-n
0.0615933.4 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -8.99 ± 1.3 kcal/molRuscic CBS-n
0.0615935.4 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -11.70 ± 1.3 kcal/molRuscic CBS-n
0.0605931.1 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(298.15 K) = -7.3 ± 1.3 kcal/molWenthold 1995a
0.0605931.4 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -7.51 ± 1.3 kcal/molRuscic CBS-n
0.0577381.1 C6H4(C4H4) (g) [C6H5]- (g) → [C6H4(CCHCHCH)]- (g) C6H6 (g) ΔrH°(600 K) = -6.8 ± 1.0 kcal/molMeot-Ner 1988a


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.