Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Hydrogen bromideHBr (aq, 2570 H2O)Br-120.62± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*952

Top contributors to the provenance of ΔfH° of HBr (aq, 2570 H2O)

The 20 contributors listed below account only for 65.8% of the provenance of ΔfH° of HBr (aq, 2570 H2O).
A total of 165 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
9.2971.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
7.61022.1 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.40 (×2.378) kJ/molJohnson 1963, as quoted by CODATA Key Vals
7.61022.2 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.80 (×1.189) kJ/molSunner 1964, as quoted by CODATA Key Vals
6.61002.1 HBr (g) → HBr (aq, 2570 H2O) ΔrH°(298.15 K) = -20.286 ± 0.012 kcal/molVanderzee 1963
5.35023.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 eVSong 2001
5.07690.1 S(O)(OH)2 (aq, 2500 H2O) Br2 (cr,l) H2O (cr,l) → OS(O)(OH)2 (aq, 2500 H2O) + 2 HBr (aq, 1250 H2O) ΔrH°(298.15 K) = -55.47 ± 0.11 (×2.538) kcal/molJohnson 1963
4.71032.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 (×1.957) cm-1Haugh 1971, Norling 1935
2.7998.1 1/2 H2 (g) + 1/2 Br2 (cr,l) → HBr (aq) ΔrG°(298.15 K) = -102.81 ± 0.80 kJ/molJones 1934, as quoted by CODATA Key Vals
1.95016.6 CH3Cl (g) → CCl4 (g) + 3 CH4 (g) ΔrH°(0 K) = 2.52 ± 0.30 kcal/molKarton 2017
1.8996.1 1/2 H2 (g) + 1/2 Br2 (g) → HBr (g) ΔrH°(376.15 K) = -12.470 ± 0.170 (×1.044) kcal/molLacher 1956a, Lacher 1956
1.71022.3 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.55 ± 2.00 kJ/molThomsen 1882, as quoted by CODATA Key Vals
1.61132.1 Br2 (cr,l) + 3 I- (aq) → [I3]- (aq) + 2 Br- (aq) ΔrH°(298.15 K) = -29.355 ± 0.364 kcal/molWu 1963
1.4989.12 HBr (g) → H (g) Br (g) ΔrH°(0 K) = 86.47 ± 0.2 kcal/molFeller 2008
1.4990.6 HBr (g) Cl (g) → HCl (g) Br (g) ΔrH°(0 K) = -15.68 ± 0.2 kcal/molFeller 2008
1.41120.1 HI (g) Br (g) → HBr (g) I (g) ΔrH°(0 K) = -16.14 ± 0.2 kcal/molFeller 2008
1.21032.3 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31358 ± 15 (×5.076) cm-1Penno 1998, Norling 1935, est unc
1.15353.1 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.130 ± 0.005 eVBaer 2000
1.12013.1 CH4 (g) Br (g) → CH3 (g) HBr (g) ΔrH°(0 K) = 5929 ± 80 cm-1Czako 2013
1.01748.2 [ON(O)O]- (g) HBr (g) → Br- (g) HON(O)O (g) ΔrH°(391 K) = -1.03 ± 0.21 kcal/molDavidson 1977, 2nd Law
0.73802.4 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/molKovacs 2005, Atkinson 1999, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of HBr (aq, 2570 H2O)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.8 Hydrogen bromideHBr (aq, 2000 H2O)Br-120.59± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*841
99.8 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.64± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*842
99.8 Hydrogen bromideHBr (aq, 1500 H2O)Br-120.55± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*840
99.8 Hydrogen bromideHBr (aq, 1000 H2O)Br-120.49± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*839
99.8 Hydrogen bromideHBr (aq, 1250 H2O)Br-120.53± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*954
99.8 BromideBr- (aq)[Br-]-120.88± 0.14kJ/mol79.90455 ±
0.00100
24959-67-9*800
99.8 Hydrogen bromideHBr (aq)Br-120.88± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*800
99.7 Hydrogen bromideHBr (aq, 5000 H2O)Br-120.69± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*844
99.7 Hydrogen bromideHBr (aq, 600 H2O)Br-120.39± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*834
93.0 Hydrogen bromideHBr (g)Br-27.89-35.73± 0.13kJ/mol80.9119 ±
0.0010
10035-10-6*0

Most Influential reactions involving HBr (aq, 2570 H2O)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9351002.1 HBr (g) → HBr (aq, 2570 H2O) ΔrH°(298.15 K) = -20.286 ± 0.012 kcal/molVanderzee 1963
0.5751004.1 HBr (aq, 2570 H2O) → HBr (aq, 3000 H2O) ΔrH°(298.15 K) = -0.004 ± 0.002 kcal/molParker 1965, NBS Tables 1989, est unc
0.5601005.1 HBr (aq, 2000 H2O) → HBr (aq, 2570 H2O) ΔrH°(298.15 K) = -0.008 ± 0.002 kcal/molParker 1965, NBS Tables 1989, est unc
0.2061003.2 HBr (aq, 2570 H2O) → HBr (aq) ΔrH°(298.15 K) = -0.060 ± 0.004 kcal/molParker 1965, NBS Tables 1989, est unc
0.2061003.1 HBr (aq, 2570 H2O) → HBr (aq) ΔrH°(298.15 K) = -0.064 ± 0.004 kcal/molVanderzee 1963, Sturtevant 1940, Sturtevant 1940b, Sturtevant 1942, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.