Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Methanol | CH3OH (g) | | -190.03 | -200.91 | ± 0.15 | kJ/mol | 32.04186 ± 0.00090 | 67-56-1*0 |
|
Representative Geometry of CH3OH (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH3OH (g)The 9 contributors listed below account for 50.6% of the provenance of ΔfH° of CH3OH (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 21.8 | 2488.2 | CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.354) kcal/mol | Rossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion | 7.6 | 2537.1 | [CH2OH]+ (g) → CH2O (g) + H+ (g)  | ΔrH°(0 K) = 704.98 ± 0.39 kJ/mol | Czako 2009 | 3.7 | 2490.1 | CH3OH (g) → CH4 (g) + O (g, singlet)  | ΔrH°(0 K) = 133.94 ± 0.17 kcal/mol | Nguyen 2015a | 3.3 | 2489.1 | CH3OH (g) → CH3 (g) + OH (g)  | ΔrH°(0 K) = 90.12 ± 0.17 kcal/mol | Nguyen 2015a | 3.1 | 2561.1 | CH3OH (g) → CH2O (g) + H2 (g)  | ΔrH°(0 K) = 20.28 ± 0.17 kcal/mol | Nguyen 2015a | 3.1 | 2492.1 | CH3OH (g) → CH2 (g, triplet) + H2O (g)  | ΔrH°(0 K) = 81.77 ± 0.17 kcal/mol | Nguyen 2015a | 3.0 | 2491.1 | CH3OH (g) → CH2 (g, singlet) + H2O (g)  | ΔrH°(0 K) = 90.84 ± 0.17 kcal/mol | Nguyen 2015a | 2.4 | 2605.6 | CH3OH (g) → HCOH (g, trans) + H2 (g)  | ΔrH°(0 K) = 72.44 ± 0.17 kcal/mol | Nguyen 2015a | 2.2 | 2495.1 | CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(303.15 K) = -725.36 ± 0.13 (×6.727) kJ/mol | Chao 1965, mw conversion |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3OH (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 97.9 | Methanol | CH3OH (l) | | -235.27 | -238.61 | ± 0.15 | kJ/mol | 32.04186 ± 0.00090 | 67-56-1*500 | 70.5 | Hydroxymethylium | [CH2OH]+ (g) | | 717.68 | 709.74 | ± 0.18 | kJ/mol | 31.03337 ± 0.00088 | 18682-95-6*0 | 44.4 | Methanol cation | [CH3OH]+ (g) | | 856.82 | 846.50 | ± 0.32 | kJ/mol | 32.04131 ± 0.00090 | 12538-91-9*0 | 36.9 | Methoxy | CH3O (g) | | 28.80 | 21.43 | ± 0.28 | kJ/mol | 31.03392 ± 0.00088 | 2143-68-2*0 | 36.8 | Methoxide | [CH3O]- (g) | | -122.59 | -130.32 | ± 0.28 | kJ/mol | 31.03447 ± 0.00088 | 3315-60-4*0 | 35.4 | Hydroxymethyl | CH2OH (g) | | -10.44 | -16.75 | ± 0.27 | kJ/mol | 31.03392 ± 0.00088 | 2597-43-5*0 | 28.6 | Methyl nitrite | CH3ONO (g) | | -55.52 | -66.19 | ± 0.45 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*0 | 28.6 | Methyl nitrite | CH3ONO (g, cis) | | -55.52 | -67.30 | ± 0.45 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*2 | 22.8 | Methyl nitrite | CH3ONO (cr,l) | | | -88.75 | ± 0.56 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*500 | 21.7 | Water | H2O (cr,l) | | -286.298 | -285.826 | ± 0.026 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*500 |
|
Most Influential reactions involving CH3OH (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.989 | 5319.2 | [C6H5CH2]- (g) + CH3OH (g) → C6H5CH3 (g) + [CH3O]- (g)  | ΔrG°(300 K) = 0.16 ± 0.02 kcal/mol | Ellison 1996 | 0.795 | 5606.2 | CH3OH (g) + 2 ONO (g) → HON(O)O (g) + CH3ONO (g)  | ΔrG°(393.95 K) = -0.865 ± 0.105 kcal/mol | Silverwood 1967, 3rd Law | 0.610 | 2535.1 | CH3OH (g) → [CH2OH]+ (g) + H (g)  | ΔrH°(0 K) = 11.6454 ± 0.0017 eV | Borkar 2011 | 0.495 | 2484.8 | [CH3OH]- (g) → CH3OH (g)  | ΔrH°(0 K) = -1.062 ± 0.040 eV | Ruscic W1RO | 0.457 | 2506.6 | CH2OH2 (g) → CH3OH (g)  | ΔrH°(0 K) = -81.83 ± 0.17 kcal/mol | Nguyen 2015a | 0.347 | 2482.2 | CH3OH (g) → [CH3OH]+ (g)  | ΔrH°(0 K) = 10.846 ± 0.005 eV | MacNeil 1977, note unc3 | 0.347 | 2482.1 | CH3OH (g) → [CH3OH]+ (g)  | ΔrH°(0 K) = 10.853 ± 0.005 eV | Karlsson 1977 | 0.334 | 3411.1 | CH3OH (g) + [CH3CHOH]+ (g) → CH3CH2OH (g) + [CH2OH]+ (g)  | ΔrH°(0 K) = 0.848 ± 0.006 eV | Ruscic 1993, Ruscic 1994c | 0.251 | 2488.2 | CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.354) kcal/mol | Rossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion | 0.249 | 2493.5 | CH3OH (l) → CH3OH (g)  | ΔrH°(298.15 K) = 37.677 ± 0.060 kJ/mol | Fiock 1931, Rossini 1932a | 0.249 | 2493.6 | CH3OH (l) → CH3OH (g)  | ΔrH°(298.15 K) = 37.684 ± 0.060 kJ/mol | Svoboda 1973 | 0.218 | 2499.1 | [CH3OH2]+ (g) + CH3CHCH2 (g) → CH3OH (g) + [CH3CHCH3]+ (g)  | ΔrG°(598 K) = 1.6 ± 0.6 kcal/mol | Szulejko 1993, 3rd Law | 0.216 | 3383.7 | CH3CH2OH (g) + [CH3OH]+ (g) → [CH3CH2OH]+ (g) + CH3OH (g)  | ΔrH°(0 K) = -0.479 ± 0.036 eV | Ruscic W1RO, Bodi 2012 | 0.195 | 2535.2 | CH3OH (g) → [CH2OH]+ (g) + H (g)  | ΔrH°(0 K) = 11.649 ± 0.003 eV | Ruscic 1993 | 0.183 | 2493.4 | CH3OH (l) → CH3OH (g)  | ΔrH°(298.15 K) = 37.66 ± 0.07 kJ/mol | Polak 1971, note unc | 0.168 | 2386.3 | CH3NC (g) + [CH3O]- (g) → [CH2NC]- (g) + CH3OH (g)  | ΔrG°(300 K) = -0.93 ± 0.5 kcal/mol | Matimba 1992, est unc | 0.166 | 2605.6 | CH3OH (g) → HCOH (g, trans) + H2 (g)  | ΔrH°(0 K) = 72.44 ± 0.17 kcal/mol | Nguyen 2015a | 0.146 | 3957.5 | CH2CHOCH2CH3 (g, cis-trans) + CH3OH (g) → CH2CHOCH3 (g, cis) + CH3CH2OH (g)  | ΔrH°(0 K) = 0.24 ± 0.85 kcal/mol | Ruscic W1RO | 0.140 | 2502.5 | (CH3OH)2 (g) + 2 H2O (g) → (H2O)2 (g) + 2 CH3OH (g)  | ΔrH°(0 K) = 1.58 ± 0.85 kcal/mol | Ruscic W1RO | 0.138 | 4475.4 | CH3OCl (g) + H2O (g) → CH3OH (g) + HOCl (g)  | ΔrH°(0 K) = 6.67 ± 0.85 kcal/mol | Ruscic W1RO |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|