Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Methyl nitriteCH3ONO (g, cis)CON=O-55.52-67.30± 0.45kJ/mol61.0401 ±
0.0010
624-91-9*2

Representative Geometry of CH3ONO (g, cis)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3ONO (g, cis)

The 9 contributors listed below account for 74.1% of the provenance of ΔfH° of CH3ONO (g, cis).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
57.25606.2 CH3OH (g) + 2 ONO (g) → HON(O)O (g) CH3ONO (g) ΔrG°(393.95 K) = -0.865 ± 0.105 kcal/molSilverwood 1967, 3rd Law
4.45606.1 CH3OH (g) + 2 ONO (g) → HON(O)O (g) CH3ONO (g) ΔrH°(393.95 K) = -15.808 ± 0.376 kcal/molSilverwood 1967, 2nd Law
3.31699.1 ONO (g) + 1/2 O2 (g) H2O (g) → 2 HON(O)O (g) ΔrG°(371 K) = -6.04 ± 0.63 kJ/molJones 1943, 3rd Law
2.11454.3 (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l) ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/molBecker 1934
1.92488.2 CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.354) kcal/molRossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion
1.35612.1 C (graphite) + 3/2 H2 (g) O2 (g) + 1/2 N2 (g) → CH3ONO (cr,l) ΔrH°(298.15 K) = -20.329 ± 0.5 (×1.795) kcal/molBaldrey 1958, Gray 1958, note unc2
1.31698.1 ONO (g) H2O (g) → NO (g) + 2 HON(O)O (g) ΔrH°(293.1 K) = -8.95 ± 0.24 kcal/molForsythe 1942, Chambers 1937, Wilson 1940, apud Gurvich TPIS
1.25610.5 CH3ONO (g, cis) H2O (g) → CH3OH (g) HONO (g, trans) ΔrH°(0 K) = 7.30 ± 0.85 kcal/molRuscic W1RO
1.05605.1 CH3ONO (g) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) N2 (g) ΔrH°(298.15 K) = -359.4 ± 1.6 (×1.269) kcal/molGeiseler 1961

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3ONO (g, cis)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Methyl nitriteCH3ONO (g)CON=O-55.52-66.19± 0.45kJ/mol61.0401 ±
0.0010
624-91-9*0
79.6 Methyl nitriteCH3ONO (cr,l)CON=O-88.75± 0.56kJ/mol61.0401 ±
0.0010
624-91-9*500
49.8 Methyl nitriteCH3ONO (g, trans)CON=O-52.40-64.36± 0.89kJ/mol61.0401 ±
0.0010
624-91-9*1
43.9 Ethyl nitriteCH3CH2ONO (g, trans-cis)CCON=O-81.38-100.12± 0.88kJ/mol75.0666 ±
0.0017
109-95-5*1
43.9 Ethyl nitriteCH3CH2ONO (g)CCON=O-81.38-98.78± 0.88kJ/mol75.0666 ±
0.0017
109-95-5*0
28.6 MethanolCH3OH (g)CO-190.03-200.91± 0.15kJ/mol32.04186 ±
0.00090
67-56-1*0
28.0 MethanolCH3OH (l)CO-235.27-238.61± 0.15kJ/mol32.04186 ±
0.00090
67-56-1*500
-21.3 Nitric acidHON(O)O (aq)O[N+](=O)[O-]-206.64± 0.18kJ/mol63.01288 ±
0.00091
7697-37-2*800
-21.6 Nitric acidHON(O)O (cr,l)O[N+](=O)[O-]-179.02-173.30± 0.18kJ/mol63.01288 ±
0.00091
7697-37-2*500
-25.7 Nitric acidHON(O)O (g)O[N+](=O)[O-]-124.50-134.21± 0.18kJ/mol63.01288 ±
0.00091
7697-37-2*0

Most Influential reactions involving CH3ONO (g, cis)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0005604.1 CH3ONO (g) → CH3ONO (g, cis) ΔrH°(0 K) = 0 ± 0 cm-1Ruscic G3X, Ruscic CBS-n, Ruscic W1RO, Ruscic G4
0.6495607.1 CH3ONO (g, cis) → CH3ONO (g, trans) ΔrH°(0 K) = 280 ± 80 cm-1Rogowski 1942, Gray 1958, est unc
0.1845607.2 CH3ONO (g, cis) → CH3ONO (g, trans) ΔrH°(0 K) = 190 ± 150 cm-1Tarte 1952, Tarte 1951, Tarte 1951a, Elder 1962, Gray 1958, est unc
0.1275635.5 CH3CH2CH2ONO (g, gauche-trans-cis) CH3ONO (g, cis) → 2 CH3CH2ONO (g, trans-cis) ΔrH°(0 K) = -2.68 ± 0.85 kcal/molRuscic W1RO
0.1135635.2 CH3CH2CH2ONO (g, gauche-trans-cis) CH3ONO (g, cis) → 2 CH3CH2ONO (g, trans-cis) ΔrH°(0 K) = -2.56 ± 0.90 kcal/molRuscic G4
0.1135635.4 CH3CH2CH2ONO (g, gauche-trans-cis) CH3ONO (g, cis) → 2 CH3CH2ONO (g, trans-cis) ΔrH°(0 K) = -2.63 ± 0.90 kcal/molRuscic CBS-n
0.1135635.1 CH3CH2CH2ONO (g, gauche-trans-cis) CH3ONO (g, cis) → 2 CH3CH2ONO (g, trans-cis) ΔrH°(0 K) = -2.67 ± 0.90 kcal/molRuscic G3X
0.0925635.3 CH3CH2CH2ONO (g, gauche-trans-cis) CH3ONO (g, cis) → 2 CH3CH2ONO (g, trans-cis) ΔrH°(0 K) = -2.66 ± 1.0 kcal/molRuscic CBS-n
0.0515619.5 CH3CH2ONO (g, trans-cis) CH3O (g) → CH3CH2O (g, X 2A") CH3ONO (g, cis) ΔrH°(0 K) = -0.67 ± 0.9 kcal/molRuscic W1RO
0.0505617.5 CH3CH2ONO (g, trans-cis) CH3 (g) → CH3ONO (g, cis) CH3CH2 (g) ΔrH°(0 K) = 1.70 ± 0.85 kcal/molRuscic W1RO
0.0505621.5 CH3CH2ONO (g, trans-cis) CH3OH (g) → CH3ONO (g, cis) CH3CH2OH (g) ΔrH°(0 K) = -0.32 ± 0.85 kcal/molRuscic W1RO
0.0495622.5 CH3CH2ONO (g, trans-cis) CH3CH3 (g) → CH3ONO (g, cis) CH3CH2CH3 (g) ΔrH°(0 K) = 2.72 ± 0.85 kcal/molRuscic W1RO
0.0465607.8 CH3ONO (g, cis) → CH3ONO (g, trans) ΔrH°(0 K) = 333 ± 300 cm-1Ruscic W1RO
0.0455617.4 CH3CH2ONO (g, trans-cis) CH3 (g) → CH3ONO (g, cis) CH3CH2 (g) ΔrH°(0 K) = 2.11 ± 0.90 kcal/molRuscic CBS-n
0.0455617.2 CH3CH2ONO (g, trans-cis) CH3 (g) → CH3ONO (g, cis) CH3CH2 (g) ΔrH°(0 K) = 1.84 ± 0.90 kcal/molRuscic G4
0.0455617.1 CH3CH2ONO (g, trans-cis) CH3 (g) → CH3ONO (g, cis) CH3CH2 (g) ΔrH°(0 K) = 2.45 ± 0.90 kcal/molRuscic G3X
0.0445621.2 CH3CH2ONO (g, trans-cis) CH3OH (g) → CH3ONO (g, cis) CH3CH2OH (g) ΔrH°(0 K) = -0.24 ± 0.90 kcal/molRuscic G4
0.0445621.4 CH3CH2ONO (g, trans-cis) CH3OH (g) → CH3ONO (g, cis) CH3CH2OH (g) ΔrH°(0 K) = -0.18 ± 0.90 kcal/molRuscic CBS-n
0.0445621.1 CH3CH2ONO (g, trans-cis) CH3OH (g) → CH3ONO (g, cis) CH3CH2OH (g) ΔrH°(0 K) = -0.23 ± 0.90 kcal/molRuscic G3X
0.0445622.4 CH3CH2ONO (g, trans-cis) CH3CH3 (g) → CH3ONO (g, cis) CH3CH2CH3 (g) ΔrH°(0 K) = 2.85 ± 0.90 kcal/molRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
4   D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019) [DOI: 10.1021/acs.jpca.8b12329]
5   B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019) [DOI: 10.1021/acs.jpca.8b12329]
6   D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019) [DOI: 10.1021/acs.jpca.9b02295]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
Uncertainties The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
Website Functionality Credits The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
Acknowledgement This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.