Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Ethylium[CH3CH2]+ (g)[CH2+]1[CH2][H]1914.84902.76± 0.31kJ/mol29.0606 ±
0.0016
14936-94-8*0

Representative Geometry of [CH3CH2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH3CH2]+ (g)

The 20 contributors listed below account only for 66.1% of the provenance of ΔfH° of [CH3CH2]+ (g).
A total of 205 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
16.94741.1 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.130 ± 0.005 eVBaer 2000
8.92013.1 [CH3CH2]+ (g) H2O (g) → [H3O]+ (g) CH2CH2 (g) ΔrG°(298.15 K) = -1.8 ± 0.2 kcal/molBohme 1981, 3rd Law
7.91994.1 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.117 ± 0.008 eVRuscic 1989b
6.64741.2 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.133 ± 0.008 eVBorkar 2010
5.44740.1 CH2CH2 (g) HBr (g) → CH3CH2Br (g) ΔrG°(546 K) = -8.340 ± 0.203 kJ/molLane 1953, 3rd Law
5.11994.15 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.124 ± 0.010 eVLau 2005
2.22013.2 [CH3CH2]+ (g) H2O (g) → [H3O]+ (g) CH2CH2 (g) ΔrG°(373 K) = -1.4 ± 0.4 kcal/molLeito 2010
1.74746.2 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.52 ± 0.01 (×1.795) eVRosenstock 1982
1.44746.4 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.52 ± 0.02 eVTraeger 1981, AE corr, note unc2
1.31989.2 [C2H7]+ (g) → [CH3CH2]+ (g) H2 (g) ΔrG°(405 K) = 1.65 ± 0.4 kcal/molHiraoka 1976, 3rd Law
1.21994.2 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.12 ± 0.02 eVSchussler 2005, est unc
1.04741.3 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.14 ± 0.02 eVTraeger 1981, AE corr, note unc2
1.04748.1 CH3CH2I (l) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -2925.00 ± 1.16 kJ/molCarson 1994
0.91975.1 CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 kJ/molPittam 1972
0.9118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.82033.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
0.61888.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.52677.8 [CH3CHCH3]+ (g) CH3CH3 (g) → CH3CH2CH3 (g) [CH3CH2]+ (g) ΔrH°(0 K) = 18.40 ± 0.8 kcal/molRuscic W1RO
0.54746.1 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.534 ± 0.008 (×4) eVBorkar 2010
0.42014.5 [CH3CH2]+ (g) CH4 (g) → [CH3]+ (g) CH3CH3 (g) ΔrH°(0 K) = 43.33 ± 0.9 kcal/molRuscic W1RO, Borkar 2010

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3CH2]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
41.3 Ethyl bromideCH3CH2Br (g)CCBr-41.38-63.33± 0.25kJ/mol108.9651 ±
0.0019
74-96-4*0
39.4 Ethyl bromideCH3CH2Br (l)CCBr-55.78-91.31± 0.26kJ/mol108.9651 ±
0.0019
74-96-4*500
32.2 EthyleneCH2CH2 (g)C=C60.8752.35± 0.12kJ/mol28.0532 ±
0.0016
74-85-1*0
32.2 Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.181067.97± 0.12kJ/mol28.0526 ±
0.0016
34470-02-5*0
31.6 EthylCH3CH2 (g)C[CH2]131.04119.98± 0.27kJ/mol29.0611 ±
0.0016
2025-56-1*0
30.3 EthaneCH3CH3 (g)CC-68.36-83.98± 0.13kJ/mol30.0690 ±
0.0017
74-84-0*0
21.5 PropaneCH3CH2CH3 (g)CCC-82.76-105.04± 0.18kJ/mol44.0956 ±
0.0025
74-98-6*0
19.1 n-Propylium[CH3CH2CH2]+ (g)CC[CH2+]856.94838.66± 0.86kJ/mol43.0871 ±
0.0024
19252-52-9*0
19.1 iso-Propylium[CH3CHCH3]+ (g)C[CH+]C822.90805.82± 0.25kJ/mol43.0871 ±
0.0024
19252-53-0*0
17.9 Ethanium[C2H7]+ (g)[CH3+][H][CH3]874.33858.09± 0.62kJ/mol31.0764 ±
0.0017
24669-33-8*0

Most Influential reactions involving [CH3CH2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.3774741.1 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.130 ± 0.005 eVBaer 2000
0.2472987.5 CH3CH2CH2CH2 (g) [CH3CH2]+ (g) → [CH3CH2CH2CH2]+ (g) CH3CH2 (g) ΔrH°(0 K) = -0.614 ± 0.020 eVRuscic W1RO
0.1965317.5 [CH3C(O)CH2]+ (g) → [CH3CH2]+ (g) CO (g) ΔrH°(0 K) = 0.171 ± 0.040 eVRuscic W1RO
0.1831994.1 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.117 ± 0.008 eVRuscic 1989b
0.1474741.2 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.133 ± 0.008 eVBorkar 2010
0.1421989.2 [C2H7]+ (g) → [CH3CH2]+ (g) H2 (g) ΔrG°(405 K) = 1.65 ± 0.4 kcal/molHiraoka 1976, 3rd Law
0.1422013.1 [CH3CH2]+ (g) H2O (g) → [H3O]+ (g) CH2CH2 (g) ΔrG°(298.15 K) = -1.8 ± 0.2 kcal/molBohme 1981, 3rd Law
0.1171994.15 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.124 ± 0.010 eVLau 2005
0.0954746.2 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.52 ± 0.01 (×1.795) eVRosenstock 1982
0.0803018.5 [CH3CHCH3]+ (g) → [CH3CH2]+ (g) [(CH3)3C]+ (g) ΔrH°(0 K) = 0.50 ± 0.85 kcal/molRuscic W1RO
0.0774746.4 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.52 ± 0.02 eVTraeger 1981, AE corr, note unc2
0.0762987.2 CH3CH2CH2CH2 (g) [CH3CH2]+ (g) → [CH3CH2CH2CH2]+ (g) CH3CH2 (g) ΔrH°(0 K) = -0.582 ± 0.036 eVRuscic G4
0.0722987.4 CH3CH2CH2CH2 (g) [CH3CH2]+ (g) → [CH3CH2CH2CH2]+ (g) CH3CH2 (g) ΔrH°(0 K) = -0.628 ± 0.037 eVRuscic CBS-n
0.0723018.1 [CH3CHCH3]+ (g) → [CH3CH2]+ (g) [(CH3)3C]+ (g) ΔrH°(0 K) = 0.71 ± 0.90 kcal/molRuscic G3X
0.0723018.2 [CH3CHCH3]+ (g) → [CH3CH2]+ (g) [(CH3)3C]+ (g) ΔrH°(0 K) = 0.33 ± 0.90 kcal/molRuscic G4
0.0723018.4 [CH3CHCH3]+ (g) → [CH3CH2]+ (g) [(CH3)3C]+ (g) ΔrH°(0 K) = 0.20 ± 0.90 kcal/molRuscic CBS-n
0.0665316.5 CH3C(O)CH2 (g) → [CH3CH2]+ (g) CO (g) ΔrH°(0 K) = 8.490 ± 0.040 eVRuscic W1RO
0.0585317.2 [CH3C(O)CH2]+ (g) → [CH3CH2]+ (g) CO (g) ΔrH°(0 K) = 0.152 ± 0.073 eVRuscic G4
0.0583018.3 [CH3CHCH3]+ (g) → [CH3CH2]+ (g) [(CH3)3C]+ (g) ΔrH°(0 K) = 0.41 ± 1.0 kcal/molRuscic CBS-n
0.0562657.8 [CH3CH2CH2]+ (g) CH3CH3 (g) → CH3CH2CH3 (g) [CH3CH2]+ (g) ΔrH°(0 K) = 10.37 ± 0.85 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov
4   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
5   D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017) [DOI: 10.1021/acs.jpca.7b06017]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.