Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Ethyl iodideCH3CH2I (g)CCI8.70-7.18± 0.49kJ/mol155.9656 ±
0.0016
75-03-6*0

Representative Geometry of CH3CH2I (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3CH2I (g)

The 6 contributors listed below account for 90.0% of the provenance of ΔfH° of CH3CH2I (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
66.84748.1 CH3CH2I (l) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -2925.00 ± 1.16 kJ/molCarson 1994
7.84749.1 CH3CH2I (l) H2 (g) → 2 CH3CH3 (g) I2 (cr,l) ΔrH°(298.15 K) = -21.2 ± 0.8 kcal/molAshcroft 1965, Cox 1970
6.64746.2 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.52 ± 0.01 (×1.795) eVRosenstock 1982
5.34746.4 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.52 ± 0.02 eVTraeger 1981, AE corr, note unc2
2.04746.1 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.534 ± 0.008 (×4) eVBorkar 2010
1.34746.3 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.49 ± 0.04 eVBaer 1980

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2I (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.3 Ethyl iodideCH3CH2I (l)CCI-9.41-39.28± 0.49kJ/mol155.9656 ±
0.0016
75-03-6*500
14.5 Ethylium[CH3CH2]+ (g)[CH2+]1[CH2][H]1914.84902.76± 0.31kJ/mol29.0606 ±
0.0016
14936-94-8*0
11.9 WaterH2O (g, para)O-238.933-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*2
11.9 WaterH2O (g)O-238.933-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*0
11.9 WaterH2O (cr, l, eq.press.)O-286.304-285.832± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*499
11.9 WaterH2O (l, eq.press.)O-285.832± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*589
11.9 Oxonium[H3O]+ (aq)[OH3+]-285.830± 0.026kJ/mol19.02267 ±
0.00037
13968-08-6*800
11.9 WaterH2O (l)O-285.830± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*590
11.9 WaterH2O (cr,l)O-286.302-285.830± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*500
11.9 WaterH2O (g, ortho)O-238.648-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*1

Most Influential reactions involving CH3CH2I (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9284747.1 CH3CH2I (l) → CH3CH2I (g) ΔrH°(298.15 K) = 32.08 ± 0.06 kJ/molWadso 1968, Pedley 1986
0.0954746.2 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.52 ± 0.01 (×1.795) eVRosenstock 1982
0.0774746.4 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.52 ± 0.02 eVTraeger 1981, AE corr, note unc2
0.0334747.4 CH3CH2I (l) → CH3CH2I (g) ΔrH°(302.530 K) = 7.697 ± 0.044 (×1.719) kcal/molde Kolossowsky 1934, ThermoData 2004, est unc
0.0304746.1 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.534 ± 0.008 (×4) eVBorkar 2010
0.0244747.3 CH3CH2I (l) → CH3CH2I (g) ΔrH°(298.15 K) = 32.47 ± 0.34 (×1.091) kJ/molThermoData 2004
0.0194746.3 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.49 ± 0.04 eVBaer 1980
0.0124746.5 CH3CH2I (g) → [CH3CH2]+ (g) I (g) ΔrH°(0 K) = 10.50 ± 0.05 eVAkopyan 1970, Rosenstock 1982
0.0104747.5 CH3CH2I (l) → CH3CH2I (g) ΔrH°(344.482 K) = 7.285 ± 0.10 (×1.354) kcal/molKahlenberg 1901, ThermoData 2004, est unc
0.0084745.2 CH3CH2I (g) → CH3CH2 (g) I (g) ΔrH°(0 K) = 235 ± 6 kJ/molSkorobogatov 2003a, note unc
0.0074745.1 CH3CH2I (g) → CH3CH2 (g) I (g) ΔrH°(0 K) = 2.314 ± 0.06 (×1.091) eVBi 2007, note unc
0.0064745.3 CH3CH2I (g) → CH3CH2 (g) I (g) ΔrH°(0 K) = 223 ± 6 (×1.091) kJ/molSkorobogatov 1998, note unc3
0.0024744.1 CH3CH2I (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -718.4 ± 5 kcal/molThomsen 1882, Springall 1949, est unc
0.0014744.2 CH3CH2I (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -707.4 ± 5 (×1.384) kcal/molThomsen 1905, Springall 1949, est unc
0.0004747.6 CH3CH2I (l) → CH3CH2I (g) ΔrH°(341.250 K) = 30.242 ± 3.058 kJ/molWilson 1989, 2nd Law, ThermoData 2004
0.0004747.8 CH3CH2I (l) → CH3CH2I (g) ΔrH°(298.426 K) = 33.441 ± 3.104 kJ/molThermoData 2004, 2nd Law


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov
4   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
5   D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017) [DOI: 10.1021/acs.jpca.7b06017]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.