Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Ethyl bromideCH3CH2Br (g)CCBr-41.38-63.33± 0.25kJ/mol108.9651 ±
0.0019
74-96-4*0

Representative Geometry of CH3CH2Br (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3CH2Br (g)

The 20 contributors listed below account only for 66.3% of the provenance of ΔfH° of CH3CH2Br (g).
A total of 266 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
38.64740.1 CH2CH2 (g) HBr (g) → CH3CH2Br (g) ΔrG°(546 K) = -8.340 ± 0.203 kJ/molLane 1953, 3rd Law
5.44741.1 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.130 ± 0.005 eVBaer 2000
2.9946.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
2.2994.1 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.40 (×2.134) kJ/molJohnson 1963, as quoted by CODATA Key Vals
2.2994.2 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.80 (×1.067) kJ/molSunner 1964, as quoted by CODATA Key Vals
2.14741.2 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.133 ± 0.008 eVBorkar 2010
1.92033.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
1.3118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.21994.1 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.117 ± 0.008 eVRuscic 1989b
1.21975.1 CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 kJ/molPittam 1972
1.21004.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 (×2.181) cm-1Haugh 1971, Norling 1935
0.91888.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.81994.15 CH3CH2 (g) → [CH3CH2]+ (g) ΔrH°(0 K) = 8.124 ± 0.010 eVLau 2005
0.64414.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 eVSong 2001
0.62013.1 [CH3CH2]+ (g) H2O (g) → [H3O]+ (g) CH2CH2 (g) ΔrG°(298.15 K) = -1.8 ± 0.2 kcal/molBohme 1981, 3rd Law
0.6972.1 1/2 H2 (g) + 1/2 Br2 (g) → HBr (g) ΔrH°(376.15 K) = -12.470 ± 0.170 kcal/molLacher 1956a, Lacher 1956
0.6974.1 1/2 H2 (g) + 1/2 Br2 (cr,l) → HBr (aq) ΔrG°(298.15 K) = -102.81 ± 0.80 kJ/molJones 1934, as quoted by CODATA Key Vals
0.53058.1 CH2(CH2CH2CH2) (g) → 2 CH2CH2 (g) ΔrG°(750 K) = -13.37 ± 0.12 kcal/molQuick 1972, 3rd Law, note unc3
0.55398.2 CH2BrCH2Br (g) CH3CH3 (g) → 2 CH3CH2Br (g) ΔrH°(0 K) = -0.41 ± 1.0 kcal/molRuscic G4
0.4965.12 HBr (g) → H (g) Br (g) ΔrH°(0 K) = 86.47 ± 0.2 kcal/molFeller 2008

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2Br (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
95.4 Ethyl bromideCH3CH2Br (l)CCBr-55.78-91.31± 0.26kJ/mol108.9651 ±
0.0019
74-96-4*500
48.1 Hydrogen bromideHBr (g)Br-27.94-35.79± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*0
48.1 Bromoniumyl[HBr]+ (g)[BrH+]1097.731089.89± 0.14kJ/mol80.9114 ±
0.0010
12258-64-9*0
45.3 EthyleneCH2CH2 (g)C=C60.8752.35± 0.12kJ/mol28.0532 ±
0.0016
74-85-1*0
45.3 Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.181067.97± 0.12kJ/mol28.0526 ±
0.0016
34470-02-5*0
45.3 Hydrogen bromideHBr (aq, 2570 H2O)Br-120.67± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*952
45.2 Hydrogen bromideHBr (aq, 2000 H2O)Br-120.64± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*841
45.2 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.69± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*842
45.2 Hydrogen bromideHBr (aq)Br-120.93± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*800
45.2 BromideBr- (aq)[Br-]-120.93± 0.15kJ/mol79.90455 ±
0.00100
24959-67-9*800

Most Influential reactions involving CH3CH2Br (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8384740.1 CH2CH2 (g) HBr (g) → CH3CH2Br (g) ΔrG°(546 K) = -8.340 ± 0.203 kJ/molLane 1953, 3rd Law
0.5004742.9 CH3CH2Br (l) → CH3CH2Br (g) ΔrG°(298.236 K) = 1.263 ± 0.109 kJ/molThermoData 2004, 3rd Law
0.3774741.1 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.130 ± 0.005 eVBaer 2000
0.1715402.2 CH3CHBr2 (g) CH3CH3 (g) → 2 CH3CH2Br (g) ΔrH°(0 K) = -1.68 ± 1.0 kcal/molRuscic G4
0.1484742.4 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(304.6 K) = 27.77 ± 0.20 kJ/molSvoboda 1977, Majer 1985, est unc
0.1484742.5 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(311.9 K) = 27.29 ± 0.20 kJ/molSvoboda 1977, Majer 1985, est unc
0.1474741.2 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.133 ± 0.008 eVBorkar 2010
0.1415402.1 CH3CHBr2 (g) CH3CH3 (g) → 2 CH3CH2Br (g) ΔrH°(0 K) = -1.75 ± 1.1 kcal/molRuscic G3X
0.1354742.7 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(305.99 K) = 6.632 ± 0.05 kcal/molde Kolossowsky 1934, ThermoData 2004, est unc
0.0755398.2 CH2BrCH2Br (g) CH3CH3 (g) → 2 CH3CH2Br (g) ΔrH°(0 K) = -0.41 ± 1.0 kcal/molRuscic G4
0.0625398.1 CH2BrCH2Br (g) CH3CH3 (g) → 2 CH3CH2Br (g) ΔrH°(0 K) = -0.35 ± 1.1 kcal/molRuscic G3X
0.0445398.3 CH2BrCH2Br (g) CH3CH3 (g) → 2 CH3CH2Br (g) ΔrH°(0 K) = -1.72 ± 1.3 kcal/molRuscic CBS-n
0.0424742.6 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(322.7 K) = 26.54 ± 0.20 (×1.874) kJ/molSvoboda 1977, Majer 1985, est unc
0.0275402.3 CH3CHBr2 (g) CH3CH3 (g) → 2 CH3CH2Br (g) ΔrH°(0 K) = -4.61 ± 1.3 (×1.915) kcal/molRuscic CBS-n
0.0234741.3 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.14 ± 0.02 eVTraeger 1981, AE corr, note unc2
0.0224934.1 BrCH2CH2OH (g) CH3CH3 (g) → CH3CH2OH (g) CH3CH2Br (g) ΔrH°(0 K) = 0.81 ± 0.90 kcal/molRuscic G3X
0.0224934.2 BrCH2CH2OH (g) CH3CH3 (g) → CH3CH2OH (g) CH3CH2Br (g) ΔrH°(0 K) = 0.60 ± 0.90 kcal/molRuscic G4
0.0184934.3 BrCH2CH2OH (g) CH3CH3 (g) → CH3CH2OH (g) CH3CH2Br (g) ΔrH°(0 K) = 0.75 ± 1.0 kcal/molRuscic CBS-n
0.0174742.3 CH3CH2Br (l) → CH3CH2Br (g) ΔrH°(298.15 K) = 27.88 ± 0.59 kJ/molThermoData 2004
0.0114735.4 CH3CH2Br (g) CH3F (g) → CH3CH2F (g) CH3Br (g) ΔrH°(0 K) = -1.72 ± 1.0 kcal/molRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov
4   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
5   D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017) [DOI: 10.1021/acs.jpca.7b06017]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.