Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
HydrideH- (g)[H-]143.264145.228± 0.000kJ/mol1.008489 ±
0.000070
12184-88-2*0

Representative Geometry of H- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of H- (g)

The 5 contributors listed below account for 91.9% of the provenance of ΔfH° of H- (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
67.074.6 H- (g) → H (g) ΔrH°(0 K) = 6083.064145 ± 0.000030 cm-1Drake 1999, Andersen 1999, Feller 2016
15.857.14 H2 (g) → 2 H (g) ΔrH°(0 K) = 36118.0695 ± 0.0020 cm-1Piszczatowski 2009, note unc
3.363.1 H2 (g, para) → H2 (g) ΔrH°(0 K) = 0.0 ± 0.0 cm-1triv
3.365.1 H2 (g, ortho) → [H2]+ (g) ΔrH°(0 K) = 124299.00429 ± 0.00071 cm-1Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008
2.373.2 H (g) → H+ (g) ΔrH°(0 K) = 109678.7717426 ± 0.0000020 cm-1Liu 2009, note unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of H- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
57.2 Hydrogen atomH (g)[H]216.034217.998± 0.000kJ/mol1.007940 ±
0.000070
12385-13-6*0
36.5 HydronH+ (g)[H+]1528.0841530.047± 0.000kJ/mol1.007391 ±
0.000070
12408-02-5*0
34.0 Dihydrogen cation[H2]+ (g)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*0
26.6 Dihydrogen cation[H2]+ (g, para)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*2
23.4 DihydrogenH2 (g, ortho)[H][H]1.4170.019± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*1
20.9 Deuterium hydride cation[HD]+ (g)[H][2H+]1490.4981490.587± 0.000kJ/mol3.021493 ±
0.000070
12181-16-7*0
20.5 Deuterium hydrideHD (g)[H][2H]0.3280.319± 0.000kJ/mol3.022042 ±
0.000070
13983-20-5*0
19.7 DihydrogenH2 (g, para)[H][H]-0.000-0.058± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*2
16.9 Dihydrogen cation[H2]+ (g, ortho)[H][H+]1489.0601488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*1
1.2 Helium hydride cation[HeH]+ (g)[He][H+]1350.1481348.258± 0.000kJ/mol5.009993 ±
0.000070
17009-49-3*0

Most Influential reactions involving H- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.99674.6 H- (g) → H (g) ΔrH°(0 K) = 6083.064145 ± 0.000030 cm-1Drake 1999, Andersen 1999, Feller 2016
0.94272.1 [H2]- (g) → H (g) H- (g) ΔrH°(0 K) = 8819.364 ± 100 cm-1Srivastava 2012, est unc
0.2522177.1 [CH3NH]- (g) H2 (g) → H- (g) CH3NH2 (g) ΔrG°(296 K) = -1.46 ± 0.29 kcal/molMacKay 1976, note unc2
0.0651404.4 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(296 K) = -1.916 ± 0.272 kcal/molBohme 1973, MacKay 1976, note unc2
0.0301404.2 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(297 K) = -1.945 ± 0.400 kcal/molBohme 1973, note unc2
0.015371.1 [HOOO]- (g, gauche) → OOO (g) H- (g) ΔrH°(0 K) = 99 ± 3 kcal/molElliott 2003, est unc
0.0042535.1 [HCO]- (g) → H- (g) CO (g) ΔrH°(0 K) = 4.45 ± 1.50 kcal/molvan Mourik 2000, est unc
0.0024922.1 C6H6 (g) → [C6H5]+ (g) H- (g) ΔrH°(298.15 K) = 1196 ± 16 kJ/molNicolaides 1997, note unc4
0.0022000.1 CH3CH3 (g) → [CH3CH2]+ (g) H- (g) ΔrH°(0 K) = 11.71 ± 0.06 eVChupka 1967
0.00274.3 H- (g) → H (g) ΔrH°(0 K) = 6083.06 ± 0.02 cm-1Hotop 1985, Aashamar 1970, Hotop 1975
0.0012222.1 CH2NH (g) → [HCNH]+ (g) H- (g) ΔrH°(298.15 K) = 231.8 ± 2.5 (×3.513) kcal/molDeFrees 1978
0.00174.2 H- (g) → H (g) ΔrH°(0 K) = 6083.092 ± 0.01 (×2.828) cm-1Pekeris 1962, Pekeris 1958
0.0001424.1 [NH]- (g) → N (g) H- (g) ΔrH°(0 K) = 67.1 ± 1.0 (×2.538) kcal/molMorosi 1999, Ruscic G3B3, note unc2
0.00074.1 H- (g) → H (g) ΔrH°(0 K) = 6082.99 ± 0.15 cm-1Lykke 1991
0.00074.5 H- (g) → H (g) ΔrH°(0 K) = 6083.0983 ± 0.2 cm-1Cafiero 2003, Kinghorn 1997, est unc
0.00076.3 H2 (g) → H+ (g) H- (g) ΔrH°(0 K) = 139714.8 ± 1.0 (×1.044) cm-1Shiell 2000
0.00074.4 H- (g) → H (g) ΔrH°(0 K) = 6082.8 ± 0.7 cm-1Harms 1997
0.00076.4 H2 (g) → H+ (g) H- (g) ΔrH°(0 K) = 139712.6 ± 1.0 (×1.189) cm-1Dehmer 1975a
0.00076.2 H2 (g) → H+ (g) H- (g) ΔrH°(0 K) = 139711 ± 3 cm-1Pratt 1992
0.00076.1 H2 (g) → H+ (g) H- (g) ΔrH°(0 K) = 139714 ± 3 cm-1Pratt 1992


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov
4   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
5   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.