Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Deuterium hydride | HD (g) | | 0.328 | 0.319 | ± 0.000 | kJ/mol | 3.022042 ± 0.000070 | 13983-20-5*0 |
|
Representative Geometry of HD (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HD (g)The 10 contributors listed below account for 90.5% of the provenance of ΔfH° of HD (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 20.1 | 102.10 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36405.7828 ± 0.0020 cm-1 | Pachucki 2010, note unc | 18.5 | 103.6 | HD (g) → [HD]+ (g)  | ΔrH°(0 K) = 124568.48581 ± 0.00072 cm-1 | Sprecher 2010, Sprecher 2013, Evenson 1988, Hannemann 2006, note unc | 11.8 | 96.10 | D2 (g) → 2 D (g)  | ΔrH°(0 K) = 36748.3633 ± 0.0018 cm-1 | Piszczatowski 2009, note unc | 10.5 | 105.1 | [HD]+ (g) → H+ (g) + D+ (g)  | ΔrH°(0 K) = 131224.68415 ± 0.00012 cm-1 | Korobov 2008, Sprecher 2010, note unc | 8.1 | 101.1 | [D2]+ (g) → D (g) + D+ (g)  | ΔrH°(0 K) = 21711.5833 ± 0.002 cm-1 | Moss 1993a, Leach 1995, est unc | 6.2 | 57.14 | H2 (g) → 2 H (g)  | ΔrH°(0 K) = 36118.0695 ± 0.0020 cm-1 | Piszczatowski 2009, note unc | 5.0 | 104.1 | [HD]+ (g) → H+ (g) + D (g)  | ΔrH°(0 K) = 21516.0696 ± 0.002 cm-1 | Moss 1993, Moss 1993a, Leach 1995, est unc | 3.8 | 63.1 | H2 (g, para) → H2 (g)  | ΔrH°(0 K) = 0.0 ± 0.0 cm-1 | triv | 3.7 | 65.1 | H2 (g, ortho) → [H2]+ (g)  | ΔrH°(0 K) = 124299.00429 ± 0.00071 cm-1 | Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008 | 2.4 | 97.4 | D2 (g) → [D2]+ (g)  | ΔrH°(0 K) = 124745.39407 ± 0.0011 cm-1 | Liu 2010, note unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HD (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 78.8 | Deuterium hydride cation | [HD]+ (g) | | 1490.498 | 1490.587 | ± 0.000 | kJ/mol | 3.021493 ± 0.000070 | 12181-16-7*0 | 47.4 | Deuterium atom cation | D+ (g) | | 1532.210 | 1534.123 | ± 0.000 | kJ/mol | 2.01355319809 ± 0.00000000040 | 14464-47-2*0 | 43.6 | Deuterium atom | D (g) | | 219.804 | 221.717 | ± 0.000 | kJ/mol | 2.01410177800 ± 0.00000000040 | 16873-17-9*0 | 40.3 | Hydron | H+ (g) | | 1528.084 | 1530.047 | ± 0.000 | kJ/mol | 1.007391 ± 0.000070 | 12408-02-5*0 | 36.2 | Dihydrogen cation | [H2]+ (g) | | 1488.364 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*0 | 35.9 | Hydrogen atom | H (g) | | 216.034 | 217.998 | ± 0.000 | kJ/mol | 1.007940 ± 0.000070 | 12385-13-6*0 | 28.3 | Dihydrogen cation | [H2]+ (g, para) | | 1488.364 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*2 | 24.9 | Dihydrogen | H2 (g, ortho) | | 1.417 | 0.019 | ± 0.000 | kJ/mol | 2.01588 ± 0.00014 | 1333-74-0*1 | 21.0 | Dihydrogen | H2 (g, para) | | -0.000 | -0.058 | ± 0.000 | kJ/mol | 2.01588 ± 0.00014 | 1333-74-0*2 | 20.5 | Hydride | H- (g) | | 143.264 | 145.228 | ± 0.000 | kJ/mol | 1.008489 ± 0.000070 | 12184-88-2*0 |
|
Most Influential reactions involving HD (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.827 | 103.6 | HD (g) → [HD]+ (g)  | ΔrH°(0 K) = 124568.48581 ± 0.00072 cm-1 | Sprecher 2010, Sprecher 2013, Evenson 1988, Hannemann 2006, note unc | 0.369 | 102.10 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36405.7828 ± 0.0020 cm-1 | Pachucki 2010, note unc | 0.014 | 102.5 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36405.775 ± 0.010 cm-1 | Stoicheff 2001, note H2a | 0.014 | 102.8 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36405.7814 ± 0.010 cm-1 | Stanke 2009, Pachucki 2010, est unc | 0.006 | 102.7 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36405.787 ± 0.015 cm-1 | Wolniewicz 1995, est unc | 0.005 | 103.3 | HD (g) → [HD]+ (g)  | ΔrH°(0 K) = 124568.481 ± 0.012 cm-1 | Shiner 1993, Gilligan 1992 | 0.003 | 102.6 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36405.763 ± 0.020 cm-1 | Kolos 1993, est unc | 0.002 | 103.2 | HD (g) → [HD]+ (g)  | ΔrH°(0 K) = 124568.479 ± 0.020 cm-1 | Gilligan 1992 | 0.002 | 103.4 | HD (g) → [HD]+ (g)  | ΔrH°(0 K) = 124568.490 ± 0.020 cm-1 | Kolos 1994, est unc | 0.000 | 103.5 | HD (g) → [HD]+ (g)  | ΔrH°(0 K) = 124568.491 ± 0.034 cm-1 | Greetham 2003, Moss 1993, note unc | 0.000 | 102.9 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36405.828 ± 0.010 (×4.555) cm-1 | Zhang 2004 | 0.000 | 102.3 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36405.88 ± 0.10 cm-1 | Eyler 1993 | 0.000 | 102.4 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36405.83 ± 0.10 cm-1 | Balakrishnan 1993 | 0.000 | 102.2 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36406.2 ± 0.4 (×1.044) cm-1 | Herzberg 1970, Herzberg 1969 | 0.000 | 103.1 | HD (g) → [HD]+ (g)  | ΔrH°(0 K) = 124568.5 ± 0.6 cm-1 | Takezawa 1972, Herzberg 1972, Takezawa 1975, Dabrowski 1976 | 0.000 | 102.1 | HD (g) → H (g) + D (g)  | ΔrH°(0 K) = 36400.5 ± 1.0 (×5.301) cm-1 | Herzberg 1960, Stoicheff 2001 |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov |
4
|
|
J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017)
[DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
|
5
|
|
Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017)
[DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|