Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Dinitrogen pentoxide | O2NONO2 (cr,l) | | | -41.06 | ± 0.42 | kJ/mol | 108.0105 ± 0.0015 | 10102-03-1*500 |
|
Top contributors to the provenance of ΔfH° of O2NONO2 (cr,l)The 20 contributors listed below account only for 89.4% of the provenance of ΔfH° of O2NONO2 (cr,l). A total of 21 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 28.5 | 1329.2 | O2NONO2 (cr,l) → O2NONO2 (g)  | ΔrH°(298.15 K) = 13.37 ± 0.06 kcal/mol | Russ 1913, apud JANAF 3 | 14.1 | 1646.2 | NO3 (g) → O (g) + ONO (g)  | ΔrH°(0 K) = 17079 ± 15 cm-1 | Johnston 1996, Davis 1993 | 6.3 | 1326.6 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(294.8 K) = 12.23 ± 0.17 kcal/mol | Matsumoto 2006, 3rd Law | 4.5 | 1326.8 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(295 K) = 12.25 ± 0.20 kcal/mol | Matsumoto 2006, 3rd Law | 4.5 | 1326.9 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(293 K) = 12.49 ± 0.20 kcal/mol | Matsumoto 2006, 3rd Law | 3.8 | 1327.1 | O2NONO2 (g) → ONO (g) + NO (g) + O2 (g)  | ΔrG°(298.15 K) = 4.77 ± 0.30 kcal/mol | Ray 1957a, Daniels 1921, 3rd Law, apud Gurvich TPIS | 2.9 | 1326.10 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(295 K) = 12.19 ± 0.25 kcal/mol | Matsumoto 2006, 3rd Law | 2.1 | 1325.7 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(295 K) = 12.02 ± 0.29 kcal/mol | Burrows 1985, 3rd Law, note unc5 | 2.0 | 1326.4 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(298.15 K) = 12.17 ± 0.30 kcal/mol | Tuazon 1984, note unc5 | 2.0 | 1325.5 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(297 K) = 12.17 ± 0.30 kcal/mol | Kircher 1984, 3rd Law, note unc5 | 2.0 | 1326.1 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(300 K) = 12.0 ± 0.3 kcal/mol | Perner 1985, note unc5 | 2.0 | 1326.2 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(298.15 K) = 12.3 ± 0.3 kcal/mol | Smith 1985, Viggiano 1981, note unc5 | 2.0 | 1326.3 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(298.15 K) = 11.9 ± 0.3 kcal/mol | Smith 1985, Connell 1979, note unc5 | 2.0 | 1189.2 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Dingle 1975 | 2.0 | 1189.1 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Callear 1970 | 1.9 | 1325.3 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(313.5 K) = 11.37 ± 0.31 kcal/mol | Graham 1978, Graham 1978a, 3rd Law, note unc5 | 1.7 | 1325.9 | O2NONO2 (g) → ONO (g) + NO3 (g)  | ΔrG°(320 K) = 11.59 ± 0.32 kcal/mol | Cantrell 1988, 3rd Law, note unc5 | 1.7 | 1329.6 | O2NONO2 (cr,l) → O2NONO2 (g)  | ΔrH°(298.15 K) = 13.12 ± 0.24 kcal/mol | Russ 1913, Daniels 1920, apud Gurvich TPIS | 1.6 | 1189.4 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52408 ± 10 (×1.114) cm-1 | Kley 1973, Miescher 1974, est unc | 0.9 | 1329.3 | O2NONO2 (cr,l) → O2NONO2 (g)  | ΔrH°(298.15 K) = 13.04 ± 0.12 (×2.709) kcal/mol | Russ 1913, 2nd Law, note unc6 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of O2NONO2 (cr,l) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 82.4 | Dinitrogen pentoxide | O2NONO2 (g) | | 24.41 | 14.84 | ± 0.35 | kJ/mol | 108.0105 ± 0.0015 | 10102-03-1*0 | 46.7 | Nitroxyl | NO3 (g) | | 79.38 | 74.13 | ± 0.19 | kJ/mol | 62.00494 ± 0.00090 | 12033-49-7*0 | 30.2 | Nitrogen dioxide | ONO (g) | | 36.855 | 34.048 | ± 0.065 | kJ/mol | 46.00554 ± 0.00060 | 10102-44-0*0 | 30.1 | Nitric oxide | NO (g) | | 90.616 | 91.120 | ± 0.065 | kJ/mol | 30.00614 ± 0.00031 | 10102-43-9*0 | 30.1 | Nitrosyl ion | [NO]+ (g) | | 984.484 | 984.479 | ± 0.065 | kJ/mol | 30.00559 ± 0.00031 | 14452-93-8*0 | 29.3 | Dinitrogen tetraoxide | O2NNO2 (g) | | 20.14 | 10.85 | ± 0.14 | kJ/mol | 92.0111 ± 0.0012 | 10544-72-6*0 | 29.1 | Nitrosyl chloride | ClNO (g) | | 54.450 | 52.548 | ± 0.067 | kJ/mol | 65.45884 ± 0.00095 | 2696-92-6*0 | 28.4 | Dinitrogen dioxide | ONNO (g, cis) | | 172.88 | 171.12 | ± 0.14 | kJ/mol | 60.01228 ± 0.00062 | 16824-89-8*2 | 28.4 | Dinitrogen dioxide | ONNO (g) | | 172.88 | 171.12 | ± 0.14 | kJ/mol | 60.01228 ± 0.00062 | 16824-89-8*0 | 27.1 | Nitrogen sesquioxide | ONNO2 (g) | | 90.71 | 86.15 | ± 0.15 | kJ/mol | 76.01168 ± 0.00091 | 10544-73-7*0 |
|
Most Influential reactions involving O2NONO2 (cr,l)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.896 | 1329.2 | O2NONO2 (cr,l) → O2NONO2 (g)  | ΔrH°(298.15 K) = 13.37 ± 0.06 kcal/mol | Russ 1913, apud JANAF 3 | 0.056 | 1329.6 | O2NONO2 (cr,l) → O2NONO2 (g)  | ΔrH°(298.15 K) = 13.12 ± 0.24 kcal/mol | Russ 1913, Daniels 1920, apud Gurvich TPIS | 0.030 | 1329.3 | O2NONO2 (cr,l) → O2NONO2 (g)  | ΔrH°(298.15 K) = 13.04 ± 0.12 (×2.709) kcal/mol | Russ 1913, 2nd Law, note unc6 | 0.008 | 1655.1 | O2NONO2 (cr,l) + H2O (cr,l) → 2 HNO3 (aq)  | ΔrH°(298.15 K) = -20.2 ± 1.37 kcal/mol | Ogg 1947 | 0.006 | 1329.4 | O2NONO2 (cr,l) → O2NONO2 (g)  | ΔrH°(298.15 K) = 14.04 ± 0.12 (×5.781) kcal/mol | Daniels 1920, est unc | 0.005 | 1329.1 | O2NONO2 (cr,l) → O2NONO2 (g)  | ΔrH°(298.15 K) = 14.104 ± 0.075 (×9.935) kcal/mol | McDaniel 1988 | 0.002 | 1329.5 | O2NONO2 (cr,l) → O2NONO2 (g)  | ΔrH°(298.15 K) = 14.51 ± 0.12 (×9.722) kcal/mol | Daniels 1920, 2nd Law, note unc6 | 0.002 | 1653.1 | O2NONO2 (cr,l) + H2O (cr,l) → 2 HNO3 (aq, 1000 H2O)  | ΔrH°(298.15 K) = -17.74 ± 0.61 (×4.555) kcal/mol | McDaniel 1988 |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015)
[DOI: 10.1021/acs.jpca.5b08406]
|
6
|
|
L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017)
[DOI: 10.1021/acs.jctc.6b00970]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|