Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Diiodine | I2 (g) | | 65.497 | 62.417 | ± 0.0041 | kJ/mol | 253.808940 ± 0.000060 | 7553-56-2*0 |
|
Representative Geometry of I2 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of I2 (g)The 5 contributors listed below account for 93.3% of the provenance of ΔfH° of I2 (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 21.8 | 1052.2 | I2 (cr,l) → I2 (g)  | ΔrG°(298.15 K) = 4.616 ± 0.002 kcal/mol | Giauque 1931, Baxter 1915, Baxter 1907, 3rd Law, est unc | 21.8 | 1052.4 | I2 (cr,l) → I2 (g)  | ΔrG°(298.15 K) = 4.618 ± 0.002 kcal/mol | Gerry 1932, Giauque 1931, 3rd Law, est unc | 21.8 | 1057.6 | I2 (cr,l) → I2 (g)  | ΔrH°(298.15 K) = 14.919 ± 0.002 kcal/mol | Shirley 1959, Baxter 1907, Baxter 1915, 2nd Law | 21.8 | 1057.8 | I2 (cr,l) → I2 (g)  | ΔrH°(325.8 K) = 14.799 ± 0.002 kcal/mol | Shirley 1959, Baxter 1907, Baxter 1915, 2nd Law | 5.9 | 1051.8 | I2 (cr,l) → I2 (g)  | ΔrG°(298.15 K) = 4.614 ± 0.002 (×1.915) kcal/mol | Baxter 1915, Baxter 1907, 3rd Law |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of I2 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Iodine atom | I (g, 2P3/2) | | 107.157 | 106.757 | ± 0.0021 | kJ/mol | 126.904470 ± 0.000030 | 14362-44-8*1 | 99.9 | Iodine atom | I (g, 2P1/2) | | 198.109 | 197.709 | ± 0.0021 | kJ/mol | 126.904470 ± 0.000030 | 14362-44-8*2 | 99.9 | Iodine atom | I (g) | | 107.157 | 106.757 | ± 0.0021 | kJ/mol | 126.904470 ± 0.000030 | 14362-44-8*0 | 89.7 | Iodide | I- (g) | | -187.995 | -188.396 | ± 0.0021 | kJ/mol | 126.905019 ± 0.000030 | 20461-54-5*0 | 31.1 | Iodine atom cation | I+ (g) | | 1115.549 | 1115.149 | ± 0.0062 | kJ/mol | 126.903921 ± 0.000030 | 22541-93-1*0 | 22.5 | Diiodine cation | [I2]+ (g) | | 963.523 | 960.408 | ± 0.018 | kJ/mol | 253.808391 ± 0.000060 | 28712-14-3*0 | 16.1 | Iodine monochloride | ICl (g) | | 19.024 | 17.391 | ± 0.013 | kJ/mol | 162.35717 ± 0.00090 | 7790-99-0*0 | 5.4 | Hydrogen iodide | HI (g) | | 28.646 | 26.470 | ± 0.036 | kJ/mol | 127.912410 ± 0.000076 | 10034-85-2*0 | 3.1 | Iodine monochloride | ICl (cr) | | -36.511 | -35.537 | ± 0.063 | kJ/mol | 162.35717 ± 0.00090 | 7790-99-0*510 | 3.1 | Iodine monochloride | ICl (cr,l) | | -36.511 | -35.537 | ± 0.063 | kJ/mol | 162.35717 ± 0.00090 | 7790-99-0*500 |
|
Most Influential reactions involving I2 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 4737.1 | C2H2I2 (g) → HCCH (g) + I2 (g)  | ΔrH°(298.15 K) = 19.90 ± 0.10 kcal/mol | Furuyama 1968, as quoted by Pedley 1986 | 1.000 | 4738.1 | C2H2I2 (g) → HCCH (g) + I2 (g)  | ΔrH°(298.15 K) = 19.90 ± 0.10 kcal/mol | Furuyama 1968, as quoted by Pedley 1986 | 0.959 | 1060.1 | [I2]- (g) → I2 (g)  | ΔrH°(0 K) = 2.524 ± 0.005 eV | Zanni 1997 | 0.929 | 3989.1 | CF3Br (g) + I2 (g) → CF3I (g) + IBr (g)  | ΔrH°(298.15 K) = 9.55 ± 0.06 kcal/mol | Lord 1967, as quoted by Cox 1970 | 0.787 | 1075.1 | 2 HI (g) → H2 (g) + I2 (g)  | ΔrG°(721.5 K) = 23.625 ± 0.080 kJ/mol | Taylor 1941, 3rd Law | 0.498 | 1059.1 | I2 (g) → [I2]+ (g)  | ΔrH°(0 K) = 75069 ± 2 cm-1 | Cockett 1995 | 0.498 | 1059.2 | I2 (g) → [I2]+ (g)  | ΔrH°(0 K) = 75069 ± 2 cm-1 | Cockett 1996 | 0.446 | 1070.9 | I2 (g) → I (g, 2P3/2) + I (g, 2P1/2)  | ΔrH°(0 K) = 20043.176 ± 0.016 cm-1 | Gerstenkorn 1983 | 0.316 | 1070.11 | I2 (g) → I (g, 2P3/2) + I (g, 2P1/2)  | ΔrH°(0 K) = 20043.159 ± 0.019 cm-1 | Tromp 1983 | 0.218 | 1052.4 | I2 (cr,l) → I2 (g)  | ΔrG°(298.15 K) = 4.618 ± 0.002 kcal/mol | Gerry 1932, Giauque 1931, 3rd Law, est unc | 0.218 | 1052.2 | I2 (cr,l) → I2 (g)  | ΔrG°(298.15 K) = 4.616 ± 0.002 kcal/mol | Giauque 1931, Baxter 1915, Baxter 1907, 3rd Law, est unc | 0.218 | 1057.8 | I2 (cr,l) → I2 (g)  | ΔrH°(325.8 K) = 14.799 ± 0.002 kcal/mol | Shirley 1959, Baxter 1907, Baxter 1915, 2nd Law | 0.218 | 1057.6 | I2 (cr,l) → I2 (g)  | ΔrH°(298.15 K) = 14.919 ± 0.002 kcal/mol | Shirley 1959, Baxter 1907, Baxter 1915, 2nd Law | 0.163 | 3987.1 | CF3H (g) + I2 (g) → CF3I (g) + HI (g)  | ΔrH°(298.15 K) = 17.10 ± 0.34 (×1.022) kcal/mol | Goy 1967, as quoted by Cox 1970 | 0.114 | 1076.1 | HI (g) → 1/2 H2 (g) + 1/2 I2 (g)  | ΔrG°(704 K) = 11.571 ± 0.028 (×3.748) kJ/mol | Rittenberg 1934, note HI, 3rd Law | 0.096 | 1070.4 | I2 (g) → I (g, 2P3/2) + I (g, 2P1/2)  | ΔrH°(0 K) = 20043.208 ± 0.033 (×1.044) cm-1 | Barrow 1973 | 0.063 | 1075.2 | 2 HI (g) → H2 (g) + I2 (g)  | ΔrH°(721.5 K) = 12.583 ± 0.282 kJ/mol | Taylor 1941, 2nd Law | 0.059 | 1051.8 | I2 (cr,l) → I2 (g)  | ΔrG°(298.15 K) = 4.614 ± 0.002 (×1.915) kcal/mol | Baxter 1915, Baxter 1907, 3rd Law | 0.059 | 3953.4 | CH3I (g) + HI (g) → I2 (g) + CH4 (g)  | ΔrG°(669 K) = -10.34 ± 0.09 (×1.874) kcal/mol | Goy 1965, 3rd Law | 0.056 | 3988.1 | CF3Cl (g) + I2 (g) → CF3I (g) + ICl (g)  | ΔrH°(298.15 K) = 17.27 ± 0.26 (×2.828) kcal/mol | Lord 1967, as quoted by Cox 1970 |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015)
[DOI: 10.1021/acs.jpca.5b08406]
|
6
|
|
L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017)
[DOI: 10.1021/acs.jctc.6b00970]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|