Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Methyl iodideCH3I (g)CI24.4014.86± 0.18kJ/mol141.93899 ±
0.00083
74-88-4*0

Representative Geometry of CH3I (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3I (g)

The 13 contributors listed below account for 90.0% of the provenance of ΔfH° of CH3I (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
38.93951.2 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.251 ± 0.0024 eVLee 2007
22.83951.1 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.248 ± 0.003 (×1.044) eVBodi 2009
5.03953.4 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(669 K) = -10.34 ± 0.09 (×1.874) kcal/molGoy 1965, 3rd Law
5.01852.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
4.73953.2 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(630.5 K) = -10.48 ± 0.08 (×2.181) kcal/molGolden 1965, 3rd Law, Cox 1970
3.53951.3 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.243 ± 0.008 eVLee 2007, Bodi 2009
2.61872.7 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.321 ± 0.001 eVBodi 2009a
1.93951.5 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.24 ± 0.01 (×1.067) eVMintz 1976
1.53965.1 CH3I (l) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) I2 (cr,l) ΔrH°(298.15 K) = -1617.2 ± 0.6 (×4.555) kJ/molCarson 1993
1.31872.2 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.323 ± 0.001 (×1.414) eVWeitzel 1999, Weitzel 2001
0.93966.1 CH3I (l) H2 (g) → 2 CH4 (g) I2 (cr,l) ΔrH°(298.15 K) = -30.0 ± 0.8 kcal/molCarson 1961, note unc, Cox 1970
0.83953.5 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrH°(669 K) = -12.65 ± 0.39 (×1.067) kcal/molGoy 1965, 2nd Law
0.63951.4 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.269 ± 0.003 (×6.169) eVSong 2001

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3I (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.7 Methyl iodide cation[CH3I]+ (g)C[I+]944.69935.29± 0.18kJ/mol141.93844 ±
0.00083
12538-72-6*0
89.9 Methyl iodideCH3I (l)CI-12.28± 0.20kJ/mol141.93899 ±
0.00083
74-88-4*590
40.1 Methylium[CH3]+ (g)[CH3+]1099.2341095.291± 0.078kJ/mol15.03397 ±
0.00083
14531-53-4*0
37.0 MethylCH3 (g)[CH3]149.829146.414± 0.080kJ/mol15.03452 ±
0.00083
2229-07-4*0
27.5 MethaneCH4 (g)C-66.556-74.525± 0.056kJ/mol16.04246 ±
0.00085
74-82-8*0
9.9 Methanide[CH3]- (g)[CH3-]141.08137.63± 0.30kJ/mol15.03507 ±
0.00083
15194-58-8*0
9.2 Carbon atomC (g)[C]711.407716.892± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*0
9.2 Carbon atomC (g, triplet)[C]711.407716.892± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*1
9.2 Carbon atomC (g, singlet)[C]833.338838.485± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*2
9.2 Carbon atomC (g, quintuplet)[C]1114.9701120.117± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*3

Most Influential reactions involving CH3I (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9043950.3 CH3I (g) → [CH3I]+ (g) ΔrH°(0 K) = 76930.0 ± 1.0 cm-1Baig 1981
0.4823951.2 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.251 ± 0.0024 eVLee 2007
0.4583964.3 CH3I (l) → CH3I (g) ΔrG°(299.19 K) = 1.484 ± 0.125 kJ/molBoublik 1972, Fogg 1953, Zaalishvili 1962, Raetzsch 1965, ThermoData 2004
0.2833951.1 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.248 ± 0.003 (×1.044) eVBodi 2009
0.2793964.5 CH3I (l) → CH3I (g) ΔrG°(287.05 K) = 2.578 ± 0.160 kJ/molBoublik 1972, Fogg 1953, Zaalishvili 1962, Raetzsch 1965, ThermoData 2004
0.2473964.7 CH3I (l) → CH3I (g) ΔrG°(285.78 K) = 2.69 ± 0.17 kJ/molThompson 1936, Fogg 1953, Zaalishvili 1962, Raetzsch 1965, ThermoData 2004
0.1592318.2 ICN (g) CH3Br (g) → BrCN (g) CH3I (g) ΔrH°(0 K) = 2.43 ± 1.0 kcal/molRuscic unpub
0.1312318.3 ICN (g) CH3Br (g) → BrCN (g) CH3I (g) ΔrH°(0 K) = 2.43 ± 1.1 kcal/molRuscic unpub
0.1163883.1 CI4 (g) + 3 CH4 (g) → 4 CH3I (g) ΔrH°(298.15 K) = -39.9 ± 12 kJ/molMarshall 2005
0.1102318.1 ICN (g) CH3Br (g) → BrCN (g) CH3I (g) ΔrH°(0 K) = 2.40 ± 1.2 kcal/molRuscic unpub
0.0593953.4 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(669 K) = -10.34 ± 0.09 (×1.874) kcal/molGoy 1965, 3rd Law
0.0563950.1 CH3I (g) → [CH3I]+ (g) ΔrH°(0 K) = 76932 ± 4 cm-1Urban 2002
0.0553953.2 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(630.5 K) = -10.48 ± 0.08 (×2.181) kcal/molGolden 1965, 3rd Law, Cox 1970
0.0433951.3 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.243 ± 0.008 eVLee 2007, Bodi 2009
0.0363950.2 CH3I (g) → [CH3I]+ (g) ΔrH°(0 K) = 76934 ± 5 cm-1Strobel 1994, Strobel 1993
0.0243951.5 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.24 ± 0.01 (×1.067) eVMintz 1976
0.0152315.2 ICN (g) CH4 (g) → HCN (g) CH3I (g) ΔrH°(0 K) = -1.03 ± 3.1 kcal/molRuscic unpub
0.0142315.3 ICN (g) CH4 (g) → HCN (g) CH3I (g) ΔrH°(0 K) = -0.97 ± 3.2 kcal/molRuscic unpub
0.0122315.1 ICN (g) CH4 (g) → HCN (g) CH3I (g) ΔrH°(0 K) = -0.05 ± 3.4 kcal/molRuscic unpub
0.0093953.5 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrH°(669 K) = -12.65 ± 0.39 (×1.067) kcal/molGoy 1965, 2nd Law


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.